




structural rods





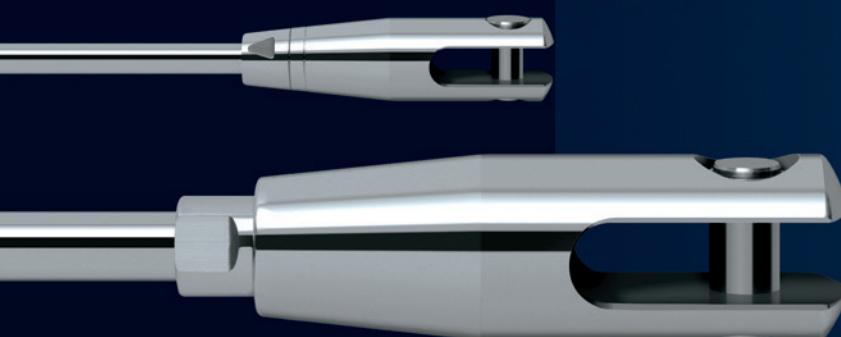
## The Value of Experience

The field of tensile architecture is exacting and precise, its success demanding the aggregation of knowledge and experience. From its facilities across Australia, Denmark and the USA, Ronstan supplies rod systems born from over 60 years of continual research, development and improvement. This Australian manufacturer is now recognised as a world leader with products available in 55 countries and in the following applications.

### Ronstan Structural Rod Applications:

- Suspension Bridges
- Curtain Walls and Glazed Structures
- Sports Facilities
- Exhibition Buildings
- Entrance Structures
- Nets and Grid Structures
- Fabric Architecture
- Braces and Trusses

### System Selection


Specifying a Ronstan structural rod system begins by identifying your application and then utilising the catalogue to:

1. Select corrosion protection - Stainless Steel or High Tensile Carbon Steel.
2. Match the load case with rod type and system.
3. Select the rod diameter.

### The Total Solution

And when assistance is required we offer:

- Design support
- Rod and fitting selection
- Assistance with corrosion protection
- Cost estimates and budgets
- Method statements and schedules
- Structural analysis
- Site supervision
- Installation



# structural rods

## Contents

|                                                         | Page |
|---------------------------------------------------------|------|
| Ronstan ARS Project Applications                        | 2-7  |
| ARS Material Options & Properties                       | 8-9  |
| ARS Surface Finishes, Dimensioning & Identification     | 10   |
| ARS Corrosion Isolation, Connection Design & Tensioning | 11   |
| Custom ARS Systems & Components                         | 12   |
| Services & Prestressing                                 | 13   |
| ARS1A - 316 Stainless Steel Rod Systems Specifications  | 14   |
| ARS2 - S520 Stainless Steel Rod Systems Specifications  | 17   |
| ARS3 - 316 Stainless Steel Rod Systems Specifications   | 21   |
| ARS4 - 520 Carbon Steel Rod Systems Specifications      | 25   |
| ARS6 - 520 Carbon Steel & 316 Stainless Steel           |      |
| Compression Struts Rod Systems Specifications           | 29   |
| Connector Plates & Discs                                | 35   |
| Nut & Washer Component Specifications                   | 37   |
| Important Customer Information                          | 39   |

Space. Simple form. Both mask a complexity inherent in tensile architecture. The structure in place, itself evidence of science and careful planning, stands to remind us of what can be achieved with the intelligent use of rods working together in tension. Be it a glazed curtain wall, a tensioned fabric roof, a simple yet elegant suspension bridge, or a cable net or grid structure, all can depend on rods as the primary load carrying elements. The results are structures of unique depth and openness, with large spans made possible by balancing the need for reduced self weight, with the application of minimalist and efficient high tensile rod tendons. This is lightweight tensile architecture and a Ronstan passion.

The intriguing capabilities of Ronstan structural rod systems are artfully revealed through their many applications. Our aim is to inspire and enthuse, and to provide a simple guide for selecting the right tension rod for your application. In this catalogue we are delighted to offer 6 rod options, in stainless steel or carbon steel with a complete range of diameters, load capacities and surface finishes. All parts can be specified with the simplicity of a single Ronstan "ARS" part number.

The process is simple. After determining the required material and suitable surface finish, the selection of rod diameter is a simple process of matching your load requirements. If the standard systems don't suit, then you have a range of other Ronstan rod fittings from which to make your selection.

Even if you have never designed with tensile rods before, it need not be a mystery. Ronstan maintains a fully staffed design engineering department to assist clients with concept development, rod system selection, estimating or to tailor a solution to your needs.

Often, attaching the rod system to your structure is the most difficult consideration. We can assist with design here as well, before our project management team takes over to ensure the proper coordination from concept to installation, and even commissioning.

# ARS1A | ARS2 | ARS3 | ARS4 | ARS6



## Facade

The facade represents the ultimate expression of individuality, reflecting the image of the occupier, classic or modern, modest or impressive. At the same time facade systems may be designed to shade, provide fall protection, reflect dramatic lighting, or enhance the corporate identity.

Ronstan Structural rods are tools with which architects and engineers can shape facade and shade elements; their functional elegance obvious to the inspired, yet light and sufficiently transparent to allow the facade to convey its message.

Project: MCG Members Entrance  
Location: Melbourne, Australia  
Architect: MCG5 - Daryl Jackson, Cox Sanderson Ness, Tomkins, Shaw & Evans, HOK Sport  
Engineers: Connell Mott MacDonald, Arup  
Rods: Ronstan Tensile Architecture  
Photo: Peter Hyatt



## Curtain Walls and Glazed Structures

The technology of transparency. Of emerging glazing technology, the penultimate is a seamless glass structure without visible means of support. At Ronstan we embrace this challenge.

Our structural rod systems are the key. They replace larger compression elements in domes, facades and point supported glass systems, and heavy mullions in conventional curtain wall with high tensile minimalist elements of stainless or carbon steel.

Further, designers at the leading edge of tensile glazing technology appreciate our depth of experience in corrosion resistant stainless alloys and our elegant rod fittings.

Project: Adelaide BMW  
Location: Adelaide, Australia  
Architect: Mathews Architects  
Engineer: Avrecon Group  
Rods: Ronstan Tensile Architecture  
Photo: Chameleon Photography



## Tension & Compression Elements

While steel bars have long been used as tensile elements within trusses, the development of steel compression elements matching the aesthetics of their tensile counterparts presents new opportunities for integrated truss solutions.

The truss elements at San Diego Yacht Club used pre-stressed stainless steel tension and compression members in a combination that ensured uncompromised function and aesthetics.

Project: Malin Burham Sailing Centre, San Diego Yacht Club  
Location: San Diego, USA  
Architect: Architects Hanna Gabriel Wells  
Engineer: KPFF Consulting Engineers  
Rods: Ronstan Tensile Architecture  
Photo: Architects Hanna Gabriel Wells



## Bridges

Cable stayed or cable supported bridges provide mechanisms through which designers and engineers can engage with bridge users.

A truly successful bridge design is one where users can be seen paused on the bridge handling the cables or bars and marvelling at the simple function of the tensile elements.

While the structurally expressive nature of suspended bridges presents a form that can be simply understood, the engineering complexity remains. Ronstan understand the behaviour of cables and bars and can help realize the most exuberant of bridge concepts.

Project: Kingsway Pedestrian Bridge  
Location: Burnaby, BC, Canada  
Architect: Busby Perkins + Will  
Engineer: Fast & Epp Structural Engineers  
Rods: Ronstan Tensile Architecture  
Photo: Busby Perkins + Will



## Wide Span Structures

Integral to any wide span structure is the creation of exciting dynamic spaces, which are clean, clear and economical, and serve to enhance the architectural experience.

With increased spans tensile rods can be used to optimise truss efficiency, replacing heavy steel members and transferring load, whilst minimising the self weight of the structure.

Sports and exhibition facilities, airports and other public spaces all benefit from the minimalist efficiency of Ronstan structural rods with their unique design aesthetics, range of finishes and structural integrity.

Project: WA Basketball Centre  
Location: Mt Claremont, Western Australia  
Architect: Peter Hunt & Daryl Jackson Architects  
Engineer: Wood & Grieve Engineers  
Structural Rods: Ronstan Tensile Architecture  
Photo: Scott Shirley Photography



## Structural Bracing

Iconic structures like the Eiffel Tower and the Sydney Harbour Bridge provide the motivation for architects and engineers to express the beauty and crispness of exposed steel on buildings.

With recent developments in high tensile rod and bar systems, we see new applications of exposed steel engineering and a new generation of structurally expressive buildings.

And with the dream comes the reality; with the challenge comes the risk. This is why so many innovative and award winning architects and engineers are working with Ronstan.

Project: QVB - Queen Victoria Building  
Location: Sydney, Australia  
Architect: Anchor Mortlock Wolley  
Engineer: Hyder Consulting  
Rods: Ronstan Tensile Architecture  
Photo: Martin Van De Wal

# ARS SYSTEM OPTIONS

## Materials & Properties

### ARS1A - 316 Stainless Steel Rods

SS 316



The seamless stainless rod with optimal aesthetics, efficiency and performance.

**Sizes/Diametres** - 6.35mm to 31.8mm (0.250in. to 1.250in.).

**Lengths** - Up to 4.0m (13.1ft) for Ø6.35-15.88mm (0.250-0.625in.),  
Up to 6.0m (19.7ft) for Ø19.00-31.75mm (0.750-1.250in.),  
before joiners are required.

**Finishes** - Bright Polished #7+Passivation, Satin Polished #4.

Others by request.

Finishes to ASTM - A380/A967/B912.

**Threads** - ASNZ:3635.

|                              |                                       |                                         |
|------------------------------|---------------------------------------|-----------------------------------------|
| <b>Mechanical Properties</b> | Ø6.35 - 9.50mm<br>(Ø0.250 - 0.374in.) | Ø12.70 - 31.75mm<br>(Ø0.500 - 1.250in.) |
| Minimum Yield Stress         | 340N/mm <sup>2</sup> (49,300psi)      | 257N/mm <sup>2</sup> (37,250psi)        |
| Minimum Breaking Stress      | 680N/mm <sup>2</sup> (98,600psi)      | 515N/mm <sup>2</sup> (74,690psi)        |
| Minimum Elongation           | 30%                                   | 30%                                     |
| Young's Modulus              | 193kN/mm <sup>2</sup> (27,992ksi)     | 193kN/mm <sup>2</sup> (27,992ksi)       |
| Material to                  | ASTM A276-A                           |                                         |

#### SPECIFIC FEATURES

- Minimalist design ensures compact neat details.
- Easy adjustment of the rod from one end without the need to rotate the bar.
- Clean polished stainless steel finish to withstand the harshest environments.
- Good strength to weight ratio allows the mass of your structure to be kept low while minimising material and transport costs.
- Good corrosion resistance and low maintenance due to material choice decreases the life cycle cost of the structure.
- 316 grade stainless steel with 94% average recycled content\*.

- Hidden threads ensuring 'sleekness' of the rod carried through entire system.
- Moderate load capacity of Ronstan's Structural Stainless Steel Rods.

\*Source: UGITECH, France.

### ARS2 - S520 Stainless Steel Rods

SS 520



A stainless rod solution for large diameter high load applications.

**Sizes/Diametres** - M12 to M56 as standard. Larger sizes available on request.

**Lengths** - Up to 6.0m (19.7ft) for Ø M12 - M16 (0.472-0.630in)  
Up to 7.5m (24.6ft) for Ø M20 - M42 (0.787-1.654in)  
Up to 6.0m (19.7ft) for Ø M48 - M56 (1.890-2.205in)  
before joiners/turnbuckles are required.

**Finishes** - Satin Polished or Bright Polished. Others by request.

**Finishes to** - EN 10088-2.

**Threads to** - BS3643.

|                              |                                   |                                   |
|------------------------------|-----------------------------------|-----------------------------------|
| <b>Mechanical Properties</b> | M12-M42<br>(0.472 - 1.654in)      | M48 - M56<br>(1.890 - 2.205in)    |
| Minimum Yield Stress         | 520N/mm <sup>2</sup> (75,400psi)  | 460N/mm <sup>2</sup> (66,700psi)  |
| Minimum Breaking Stress      | 650N/mm <sup>2</sup> (94,300psi)  | 610N/mm <sup>2</sup> (88,400psi)  |
| Minimum Elongation           | 19%                               | 19%                               |
| Young's Modulus              | 193kN/mm <sup>2</sup> (27,992ksi) | 193kN/mm <sup>2</sup> (27,992ksi) |
| Material to                  | EN 10283 / EN 10088<br>BS970      | EN 10283 / EN 10088<br>BS970      |

#### SPECIFIC FEATURES

- Attractive tapered nut and recognisable "tear drop" fork for a simple elegant style that will not date.
- Simple connection detail of pin and fork minimising installation time.
- Satin finish stainless steel for a modern aesthetic. Other finishes available on request.
- Large range of diameters available to allow consistent detailing throughout a project.
- Austenitic material.

## ARS3 - 316 Stainless Steel Rods

SS 316



**A simple and effective stainless rod for moderate loads.**

**Size/Diametres** - 4.76mm to 31.75mm (0.188in to 1.250in.).

**Lengths** - Up to 4.0m (13.1ft) for Ø4.76 - 15.88mm (0.188 - 0.625in.),  
Up to 6.0m (19.6ft) for Ø19.00 - 31.75mm (0.750 - 1.250in.),  
before joiners are required.

**Finishes** - Electropolished, to ASTM A380/A967/B912.  
Others by request.

**Threads to** - ASNZ:3635.

|                              |                                         |                                           |
|------------------------------|-----------------------------------------|-------------------------------------------|
| <b>Mechanical Properties</b> | Ø 4.76 - 9.53mm<br>(Ø 0.188 - 0.375in.) | Ø 12.70 - 31.75mm<br>(Ø 0.500 - 1.250in.) |
| Minimum Yield Stress         | 340N/mm <sup>2</sup> (49,300psi)        | 257N/mm <sup>2</sup> (37,250psi)          |
| Minimum Breaking Stress      | 680N/mm <sup>2</sup> (98,600psi)        | 515N/mm <sup>2</sup> (74,690psi)          |
| Minimum Elongation           | 30%                                     | 30%                                       |
| Young's Modulus              | 193kN/mm <sup>2</sup> (27,992ksi)       | 193kN/mm <sup>2</sup> (27,992ksi)         |
| Material to                  | ASTM A276-A                             |                                           |

**SPECIFIC FEATURES**

- Most economical solution when the good level finish of stainless steel is required, providing affordable good looks.
- ARS3 - the perfect marriage of economy, strength and corrosive resistance.
- The proven design provides ageless integrity to your structure.
- 316 grade stainless steel, utilising cold drawn bar material with 94% average recycled content\*.

\*Source: UGITECH, France.

# ARS3

## ARS4 - 520 Carbon Steel Rods

CS 520



**An attractive carbon steel rod system of unparalleled tensile strength.**

**Sizes/Diametres** - M12 to M100.

**Lengths** - Up to 6.0m (19.7ft) for Ø M12 - M16 (0.472-0.630in)  
Up to 12m (39.4ft) for Ø M20 - M100 (0.787-3.937in)  
before joiners/turnbuckles are required.

**Finishes** - Raw, hot-dip galvanised to BS EN ISO 1461:2009  
grit blast + prime painted. Others by request.

**Threads to** - BS3643.

|                              |                                       |                                       |
|------------------------------|---------------------------------------|---------------------------------------|
| <b>Mechanical Properties</b> | M12<br>(0.472")                       | M16 - M100<br>0.630" - 3.940"         |
| Minimum Yield Stress         | 355 N/mm <sup>2</sup><br>(51,490psi)  | 520 N/mm <sup>2</sup><br>(75,400psi)  |
| Minimum Breaking Stress      | 610 N/mm <sup>2</sup><br>(88,400psi)  | 650 N/mm <sup>2</sup><br>(94,300psi)  |
| Minimum Elongation           | 20%                                   | 19%                                   |
| Young's Modulus              | 205 kN/mm <sup>2</sup><br>(29,700ksi) | 205 kN/mm <sup>2</sup><br>(29,700ksi) |
| Material to                  | EN 10025                              | EN 10267                              |

**SPECIFIC FEATURES**

- High load capacity reducing the mass of your structure with flow on benefits in transport and construction costs.
- Large range of sizes to allow consistent detailing throughout a project.
- Galvanised, raw or primed finish allows for on site paint matching to structure colour and finish.
- Attractive tapered nut and recognisable "tear drop" fork for a simple elegant style that will not date.
- Simple connection detail of pin and fork minimising installation time.
- A fine grain micro alloyed carbon steel which is fully weldable.

# ARS4



### Ronstan – ARS Surface Finishes

Ronstan ARS rod systems are available with a range of surface finish options to suit the project aesthetics, installation location, environmental corrosion criteria and available budget requirements. Considering these parameters and drawing on our many years of field experience, Ronstan can assist you select an appropriate finish to ensure the product performs adequately over the course of the products intended life.

The following surface finishes are offered as standard options.

#### **SS** Stainless Steel Rod Finishes

##### **Satin Polished #4 (240 grit)**

A grainy, matt finish. Often used in architectural applications for its unobtrusive & minimalist appearance. Better suited to internal non-corrosive environments.

##### **Electropolished**

The most cost effective stainless steel finish, providing a high level of corrosion protection and light aesthetics. Note; this process may sometimes produce an uneven 'frosting' appearance due to surface reaction with the chemical process. It may also highlight marks or imperfections in the raw material surface. A selective electro chemical metal removal process (exactly the reverse of plating). The process results in the simultaneous smoothing, levelling and brightening of stainless steel. It selectively removes surface flaws, embedded impurities and high points in the surface layer.

##### **Bright Polished #7 with Passivation**

The smoothest, shiniest finish providing an improved level of corrosion protection. Bars are mechanically polished then passivated. Passivation is a chemical treatment applied to the surface of the stainless steel to remove contaminants and assist in the formulation of a continuous chromium-oxide passive film. (Note-ARS2 passivation is not standard).

#### **CS** Carbon Steel Rod Finishes

##### **Raw**

Raw carbon steel as drawn or cast (sometimes referred to as "black" or "self colour"). The lowest cost surface but will require a secondary coating to prevent oxidisation and corrosion staining from forming. Note; raw carbon steel rods and components placed in storage or transport may suffer surface corrosion as a result of the environment they are subjected to.

##### **Hot-Dip Galvanised**

The most cost effective finish for carbon steel tendons providing well proven performance to BS EN ISO1461:2009.

##### **Grit Blast and Prime Painted**

A typical finish requirement for carbon steel items before receiving a final colour top coating. The grit blasting is done to remove surface impurities and provides a clean surface for a metal primer paint to key to. Note; painted surfaces may be affected/damaged by transport and handling.

*Other surface finishes for the stainless steel or carbon steel rod systems are available on request.*

*Contact Ronstan to discuss your requirements.*

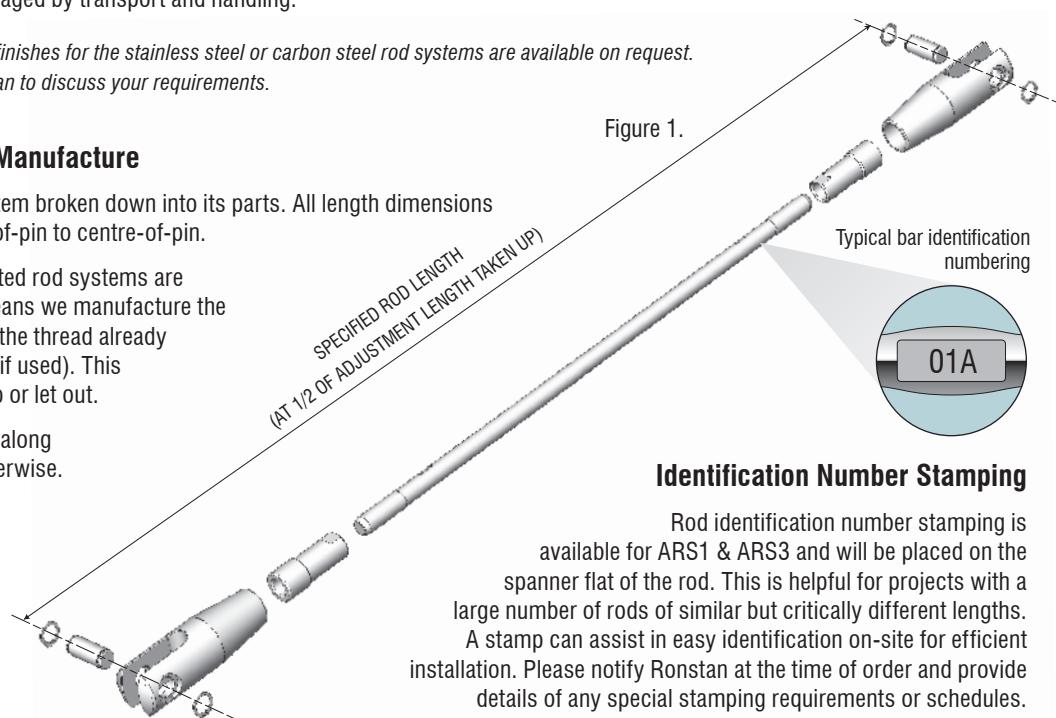

### How to Dimension Your Rods for Manufacture

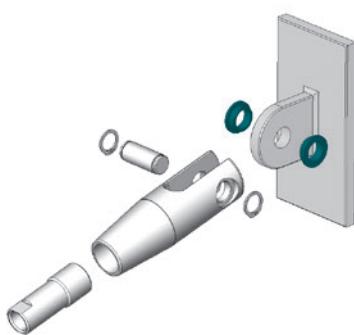
Figure 1 shows a typical Ronstan rod system broken down into its parts. All length dimensions for rod production are taken from centre-of-pin to centre-of-pin.

Thread setting – Unless otherwise requested rod systems are manufactured at mid-adjustment. This means we manufacture the rod to the dimension provided with 1/2 of the thread already taken up within each fork (and turnbuckle if used). This ensures adjustment can be either taken up or let out.

Joiners or turnbuckles will be equispaced along the assembly length, unless specified otherwise.

*Other thread positions or end types available, (eg: hexnut) on request.*

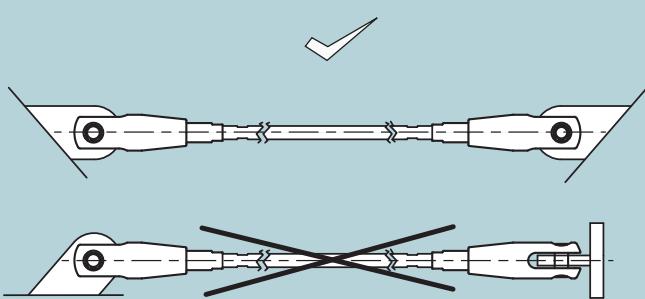



### Identification Number Stamping

Rod identification number stamping is available for ARS1 & ARS3 and will be placed on the spanner flat of the rod. This is helpful for projects with a large number of rods of similar but critically different lengths.

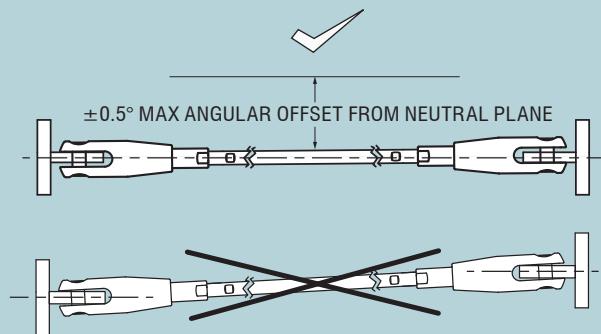
A stamp can assist in easy identification on-site for efficient installation. Please notify Ronstan at the time of order and provide details of any special stamping requirements or schedules.

## Isolation Systems for Dissimilar Metals


Installations that combine dissimilar metals (eg: stainless steel rods connecting to a carbon steel structure) may be subject to galvanic corrosion and require isolation systems to prevent damage to the rods and structure. Ronstan can provide isolation systems to suit typical installations. These are custom made to suit the installation.



## End Connection Requirements


Ronstan threaded rod systems are suitable for a wide range of applications. However, like all properly engineered mechanical systems these products require certain basic structural engineering principles to be followed to ensure proper functionality.

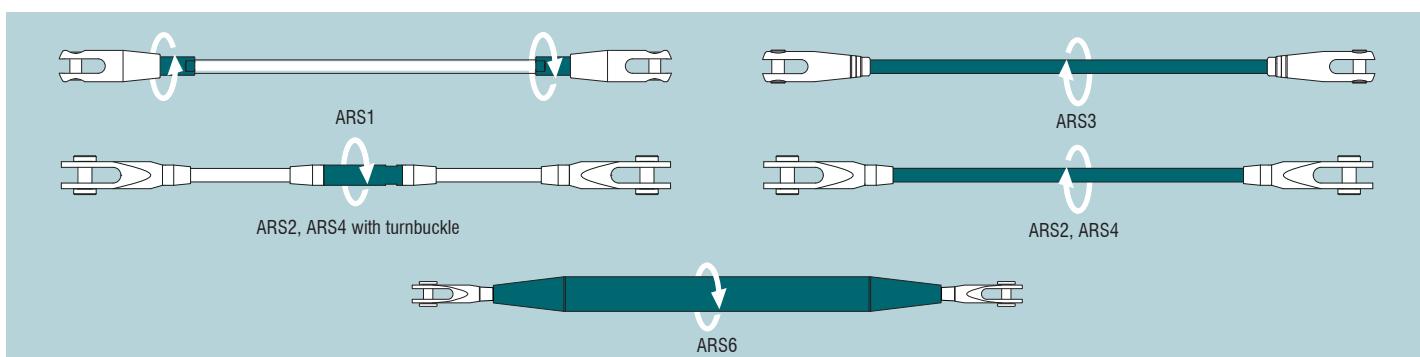
1. FORK END PIN CONNECTIONS TO BE PARALLEL TO PERMIT SYSTEM SELF-ALIGNMENT. ENSURE MOUNTING TAKEOFF CLEATS ARE IN LINE WITH LOAD DIRECTION.



Fork pin orientation is to be such that both clevis pins are in the same plane. Eg, total system orientation should permit the rod assembly to pivot at both ends and follow natural movement within the connected structure, to avoid bending or restriction.

2. MOUNTING TAKE-OFF CLEAT CONNECTIONS SHOULD BE WELL ALIGNED. TO AVOID INCORRECT LOADING ON END FITTINGS & TAKE-OFF CLEATS.




Rod assembly end connection alignment is required to be within +/- 0.5° from the neutral axis. Eg. the tendon assembly should connect structure and avoid bending of the pin, tang/cleat or clevis jaw & the resulting restriction of movement.

## Tensioning/Length Adjustment

Ronstan ARS1A is tensioned by rotating the spanner flat on the adjuster while using a second spanner to hold the rod still. This can be done at one or both ends. Tensioning of the rod from one end (using one person) saves time, installation costs, and often the need to tension at height if the rods are elevated.

Ronstan ARS2, ARS3 & ARS4 are tensioned by rotating the rod only, via the spanner flats on the rod or turnbuckle. Once the required length/tension is achieved, the tapered lock nuts should be screwed down onto the fork/turnbuckle ends and firmly tensioned. ARS6 is tensioned by rotating the center tube, then locked by a grub screw at one end.

ARS2 & ARS4 systems can utilize Ronstan's pre-stressing equipment.



[www.RonstanTensileArch.com](http://www.RonstanTensileArch.com) prides itself on key principles of concept development, design assistance, cable and fitting selection, structural analysis and installation. Comprehensive installation instructions and support is provided for each project.

## Custom System Solutions

The standard Ronstan ARS rod systems provide solutions for most applications however, there are some situations where a non-standard solution will be required. With over 60 years of in-the-field experience, Ronstan has the technical expertise and production capability to provide the exact product solution with the same ease, quality and competitive price as our standard options. Some of these other solutions include:

- **Threaded rod systems with hex nuts and washers**

Some projects require simple threaded ends instead of a pinned connection. Ronstan offer threaded bars with plain nuts and washers.

- **Eye/spade end fittings**

Eyes or spades may be required for linkages or other connections. Based on the standard fork sizes, we have many options available as made to order items.

- **Multi-segmented rod assemblies**

Often used internally as stair tread supports or externally as louver or passive sun shade supports, sometimes a rod assembly requires a mix of fully threaded & short threaded elements connected by joiners to meet the design requirements.

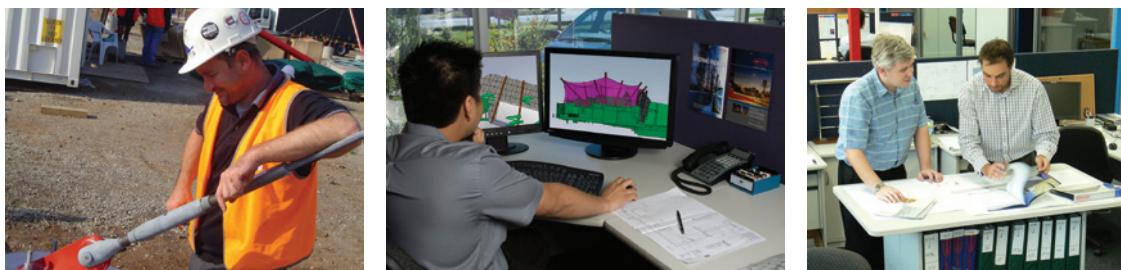
- **Welded, machined or other non-standard items**

We know that in the competitive world of tensile architecture and design, to stand out from the crowd you need a point of difference. While your product choice may not be available off-the-shelf today and has to be specially created for your cutting edge project, Ronstan Tensile Architecture is right there with you, ready to assist with your designs and ideas and make your vision a reality.

*Ronstan has contributed to some of the world's most intriguing examples of tensile architecture, while providing a tailored solution for each installation.*

*To experience the full scope of what our Tensile Architectural Services Department has achieved, please visit*

**[www.RonstanTensileArch.com](http://www.RonstanTensileArch.com)**



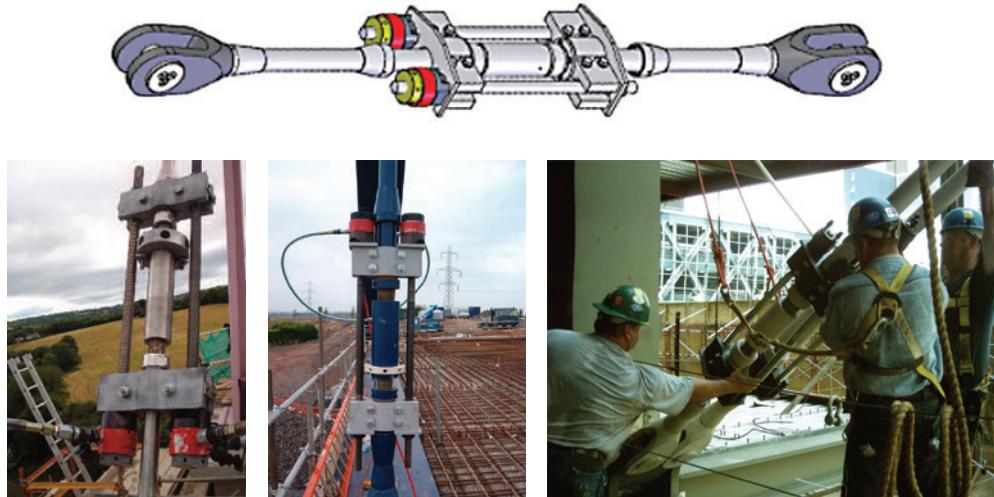

## Project Services

Ronstan Tensile Architecture draws on an unparalleled understanding of every phase and consideration involved in tensile design and construction, delivering a full range of design, engineering and installation capabilities. As a leading end-to-end specialty contractor and supplier, Ronstan brings continuity, efficiency, quality control and cost effectiveness to projects while providing a tailored solution for each installation.

*Our services include:*

- Concept development
- Design assistance
- Rod & Cable system and component selection
- Site supervision
- Project documentation eg. work method statements
- Cost / budget estimates
- Structural analysis
- Corrosion protection assistance
- On-site installation / tensioning
- Schedules & quality documentation




Ronstan's design engineers tailor solutions to meet the demands of each project, while our project management team ensures the proper coordination of project requirements. Working with a client's project team throughout the design-build process, Ronstan delivers the highest quality product and project installation world-wide. For a full overview of services available in your region, please contact your local Ronstan office. *Note: Some services not available in North America.*

Additionally, because Ronstan initially made its name in the industry as a manufacturer of architectural rigging, the company boasts invaluable expertise related to the performance characteristics of tensile architecture materials including:

- Load Requirements
- Cable Construction
- Clamps, Anchors and Assorted Fittings
- Cable Creep
- Temperature
- Corrosion Protection
- End Connections
- Factors affecting Cable Length
- Elongation Due to Clamping
- Elastic Elongation

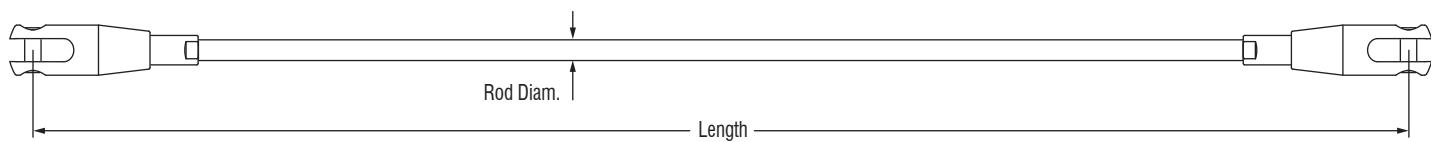
## Site Pre-Stressing

Certain applications may require tendons to be pre-stressed after installation. This can be performed provided jacking turnbuckles have been specified. Ronstan offer a robust and easy-to-use range of jacking equipment to provide a simple solution for the stressing of tendons which can be preformed by most competent steel erectors. Site supervision can be provided. *Note: Must be specified at time of rod ordering.*



# 316 Stainless Steel Rods

## ARS1A

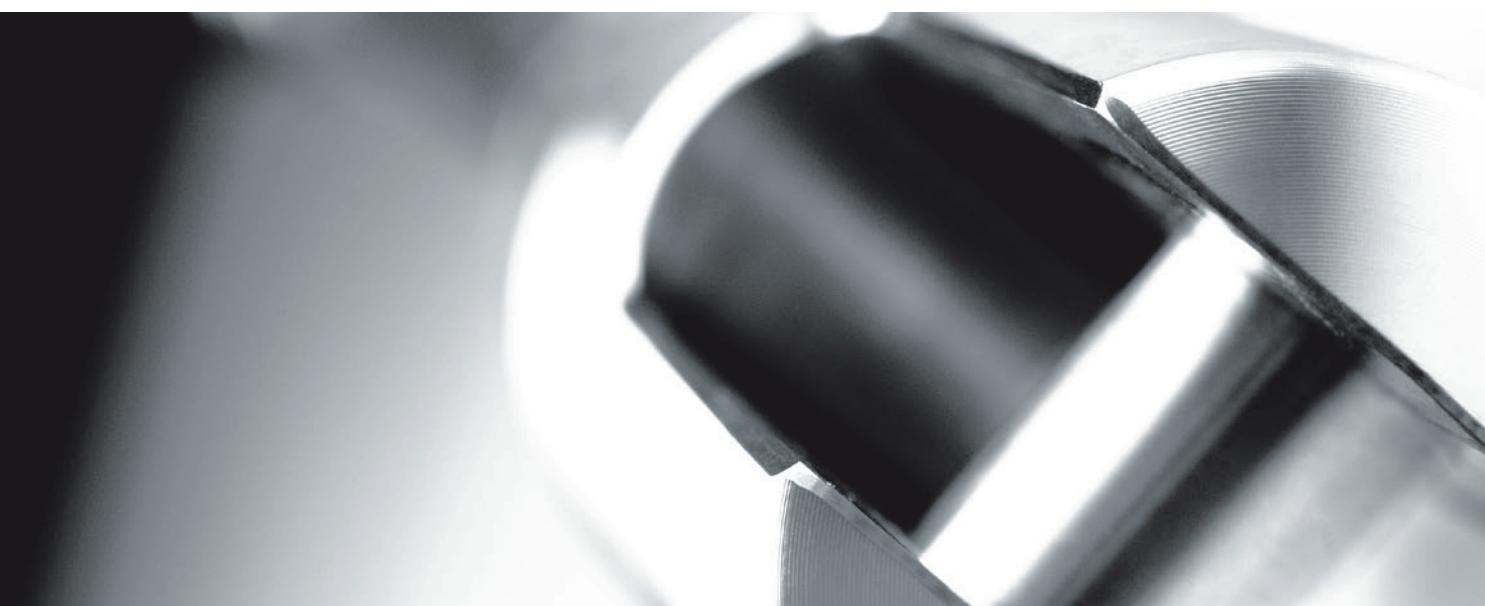

The beauty and form of tensile architecture demands more from a tendon than the simple transfer of load. Proof that optimal structural performance does not always come at the expense of aesthetics, lies in the existence of ARS1A; a rod system of such elegance that its real purpose and role in the structure are disguised.

The optimal strength to weight ratio of ARS1A ensures a minimal cross sectional area for your detail. With minimalist proportions, unique adjustable end connections, and rods in highly polished Grade 316 stainless steel, ARS1A will guarantee tendons of the highest efficiency and minimal self weight.

**ARS1A - The optimal tensile stainless rod.**



## ARS1A - Systems



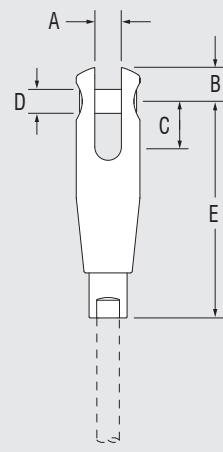

| PRODUCT<br>No. | THREAD<br>TYPE | ROD Ø<br>mm | ROD MASS<br>kg/m | ADJUSTMENT<br>± PER ASSY<br>mm | *MAX SINGLE<br>ROD LENGTH<br>m | METRIC                |                     |
|----------------|----------------|-------------|------------------|--------------------------------|--------------------------------|-----------------------|---------------------|
|                |                |             |                  |                                |                                | MIN. YIELD LOAD<br>kN | MIN. ULT LOAD<br>kN |
| ARS1A-SS-04    | 1/4" UNF       | 6.4         | 0.25             | 18.0                           | 4.0                            | 8                     | 16                  |
| ARS1A-SS-05    | 5/16" UNF      | 7.9         | 0.39             | 20.0                           | 4.0                            | 13                    | 26                  |
| ARS1A-SS-06    | 3/8" UNF       | 9.5         | 0.56             | 23.0                           | 4.0                            | 16                    | 33                  |
| ARS1A-SS-08    | 1/2" UNF       | 12.7        | 1.00             | 26.0                           | 4.0                            | 27                    | 53                  |
| ARS1A-SS-10    | 5/8" UNF       | 15.9        | 1.56             | 30.0                           | 4.0                            | 42                    | 85                  |
| ARS1A-SS-12    | 3/4" UNF       | 19.1        | 2.25             | 31.0                           | 6.0                            | 62                    | 124                 |
| ARS1A-SS-14    | 7/8" UNF       | 22.5        | 3.06             | 33.0                           | 6.0                            | 85                    | 169                 |
| ARS1A-SS-16    | 1" UNF         | 25.4        | 4.0              | 32.0                           | 6.0                            | 110                   | 220                 |
| ARS1A-SS-20    | 1 1/4" UNF     | 31.8        | 6.3              | 32.0                           | 6.0                            | 178                   | 356                 |

|             | TYPE       | in.   | lbs/ft | in.   | ft   | IMPERIAL |       |
|-------------|------------|-------|--------|-------|------|----------|-------|
|             |            |       |        |       |      | kips     | kips  |
| ARS1A-SS-04 | 1/4" UNF   | 0.252 | 0.168  | 0.709 | 13.1 | 1.80     | 3.60  |
| ARS1A-SS-05 | 5/16" UNF  | 0.311 | 0.262  | 0.787 | 13.1 | 2.92     | 5.85  |
| ARS1A-SS-06 | 3/8" UNF   | 0.374 | 0.378  | 0.906 | 13.1 | 3.60     | 7.42  |
| ARS1A-SS-08 | 1/2" UNF   | 0.500 | 0.673  | 1.024 | 13.1 | 6.07     | 11.91 |
| ARS1A-SS-10 | 5/8" UNF   | 0.626 | 1.051  | 1.181 | 13.1 | 9.44     | 19.11 |
| ARS1A-SS-12 | 3/4" UNF   | 0.752 | 1.513  | 1.220 | 19.7 | 13.94    | 27.88 |
| ARS1A-SS-14 | 7/8" UNF   | 0.874 | 2.060  | 1.299 | 19.7 | 19.11    | 37.99 |
| ARS1A-SS-16 | 1" UNF     | 1.000 | 2.690  | 1.260 | 19.7 | 24.73    | 49.46 |
| ARS1A-SS-20 | 1 1/4" UNF | 1.252 | 4.203  | 1.260 | 19.7 | 40.02    | 80.03 |

\* Joiner(s) may be used if maximum rod length material is not available and/or to reduce shipping costs or time.

Note - ARS1A systems now use Condition A grade 316 stainless steel (with the same yield and ultimate loads as ARS3). Pre-2011 Condition B material was used. Contact Ronstan for further information.




# STRUCTURAL ROD SYSTEM SPECIFICATIONS

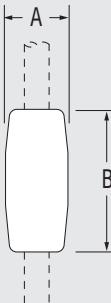
## SS 316 ARS1A - 316 Stainless Steel Rods

### ARS1A - Component Dimensions

#### Compact Adjusters - Internal RH Thread Only.

| THREAD<br>TYPE | ROD Ø | METRIC |      |      |      |        |        |      |        |
|----------------|-------|--------|------|------|------|--------|--------|------|--------|
|                |       | A      | B    | C    | D    | E MIN. | E MAX. | F    | WEIGHT |
| mm             | mm    | mm     | mm   | mm   | mm   | mm     | mm     | mm   | g      |
| 1/4" UNF       | 6.35  | 7.0    | 9.0  | 11.0 | 6.4  | 53.0   | 71.0   | 16.3 | 55     |
| 5/16" UNF      | 7.93  | 8.5    | 11.0 | 13.2 | 7.9  | 66.0   | 86.0   | 20.0 | 103    |
| 3/8" UNF       | 9.53  | 10.0   | 13.2 | 18.0 | 9.5  | 78.0   | 101.0  | 24.0 | 177    |
| 1/2" UNF       | 12.70 | 14.0   | 17.7 | 24.0 | 12.7 | 101.0  | 127.0  | 33.5 | 444    |
| 5/8" UNF       | 15.88 | 18.0   | 22.2 | 30.0 | 15.9 | 122.0  | 152.0  | 42.0 | 834    |
| 3/4" UNF       | 19.05 | 22.0   | 26.5 | 38.0 | 19.1 | 146.0  | 177.0  | 51.0 | 1439   |
| 7/8" UNF       | 22.23 | 24.0   | 31.3 | 45.0 | 22.2 | 164.0  | 197.0  | 57.3 | 2049   |
| 1" UNF         | 25.40 | 26.0   | 35.2 | 53.0 | 25.4 | 187.0  | 219.0  | 64.8 | 2998   |
| 1 1/4" UNF     | 31.75 | 32.0   | 44.7 | 66.0 | 31.8 | 229.0  | 262.0  | 78.3 | 5300   |




#### IMPERIAL

|            | in.    | oz    |
|------------|-------|-------|-------|-------|-------|-------|--------|-------|
| 1/4" UNF   | 0.250 | 0.276 | 0.354 | 0.433 | 0.250 | 2.087 | 2.795  | 0.640 |
| 5/16" UNF  | 0.312 | 0.335 | 0.433 | 0.520 | 0.312 | 2.598 | 3.386  | 0.787 |
| 3/8" UNF   | 0.375 | 0.394 | 0.520 | 0.709 | 0.375 | 3.071 | 3.976  | 0.945 |
| 1/2" UNF   | 0.500 | 0.551 | 0.697 | 0.945 | 0.500 | 3.976 | 5.000  | 1.319 |
| 5/8" UNF   | 0.625 | 0.709 | 0.874 | 1.181 | 0.625 | 4.803 | 5.984  | 1.654 |
| 3/4" UNF   | 0.750 | 0.866 | 1.043 | 1.496 | 0.750 | 5.748 | 6.969  | 2.001 |
| 7/8" UNF   | 0.875 | 0.945 | 1.232 | 1.772 | 0.875 | 6.457 | 7.756  | 2.256 |
| 1" UNF     | 1.000 | 1.024 | 1.386 | 2.087 | 1.000 | 7.362 | 8.622  | 2.551 |
| 1 1/4" UNF | 1.250 | 1.260 | 1.760 | 2.598 | 1.250 | 9.016 | 10.315 | 3.083 |
|            |       |       |       |       |       |       |        | 187.0 |



#### Joiners - Internal RH Thread Only.

| THREAD<br>TYPE | ROD Ø | A    |    | B     |    | WEIGHT |  |
|----------------|-------|------|----|-------|----|--------|--|
|                |       | mm   | mm | mm    | mm | g      |  |
| 1/4" UNF       | 6.35  | 10.2 |    | 24.0  |    | 10     |  |
| 5/16" UNF      | 7.93  | 12.5 |    | 32.0  |    | 17     |  |
| 3/8" UNF       | 9.53  | 14.2 |    | 38.0  |    | 25     |  |
| 1/2" UNF       | 12.70 | 19.8 |    | 50.0  |    | 65     |  |
| 5/8" UNF       | 15.88 | 23.8 |    | 60.0  |    | 110    |  |
| 3/4" UNF       | 19.05 | 30.2 |    | 72.0  |    | 270    |  |
| 7/8" UNF       | 22.23 | 34.5 |    | 83.0  |    | 330    |  |
| 1" UNF         | 25.40 | 39.5 |    | 90.0  |    | 460    |  |
| 1 1/4" UNF     | 31.75 | 50.0 |    | 112.0 |    | 680    |  |



#### IMPERIAL

|            | in.   | in.   | in.   | in. | oz   |
|------------|-------|-------|-------|-----|------|
| 1/4" UNF   | 0.250 | 0.394 | 0.945 |     | 0.4  |
| 5/16" UNF  | 0.312 | 0.492 | 1.260 |     | 0.6  |
| 3/8" UNF   | 0.375 | 0.559 | 1.496 |     | 0.9  |
| 1/2" UNF   | 0.500 | 0.780 | 1.969 |     | 2.3  |
| 5/8" UNF   | 0.625 | 0.937 | 2.362 |     | 3.9  |
| 3/4" UNF   | 0.750 | 1.181 | 2.835 |     | 9.5  |
| 7/8" UNF   | 0.875 | 1.358 | 3.268 |     | 11.7 |
| 1" UNF     | 1.000 | 1.555 | 3.543 |     | 16.3 |
| 1 1/4" UNF | 1.250 | 1.969 | 4.409 |     | 24.0 |



\* Joiner(s) may be used if maximum rod length material is not available and/or to reduce shipping costs or time.

Note - ARS1A systems now use Condition A grade 316 stainless steel (with the same yield and ultimate loads as ARS3).

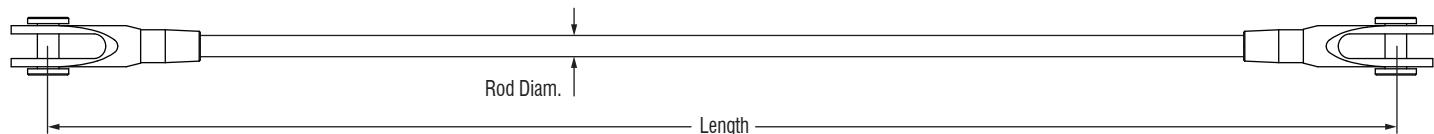
Pre-2011 Condition B material was used. Contact Ronstan for further information.

# S520 Stainless Steel Rods

## ARS2

A great all-rounder, ARS2 is the rod system that goes all the way, available right up to the largest stainless diameters our mills can provide. So when strength and aesthetics are still the driving design consideration, but exceed the capability of other stainless rods, ARS2 is the system to specify.

And with the larger diameters requiring cast stainless forks, the fork design takes on a purpose and style reflective of strength and durability, but with uncompromised architectural form.


**ARS2 - A robust stainless rod solution.**



# STRUCTURAL ROD SYSTEM SPECIFICATIONS

## SS 520 ARS2 - S520 Stainless Steel Rods

### ARS2 - Systems

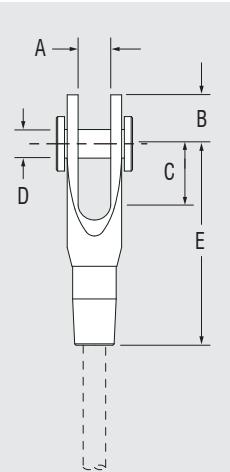


| PRODUCT<br>No. | THREAD<br>TYPE | ROD Ø<br>mm | ROD MASS<br>kg/m | ADJUSTMENT<br>± PER ASSY<br>mm | **ADJUSTMENT<br>± PER TB IF<br>USED<br>mm | *MAX SINGLE<br>ROD LENGTH<br>m | METRIC                |                     |
|----------------|----------------|-------------|------------------|--------------------------------|-------------------------------------------|--------------------------------|-----------------------|---------------------|
|                |                |             |                  |                                |                                           |                                | MIN. YIELD LOAD<br>kN | MIN. ULT LOAD<br>kN |
| ARS2-SSM12     | M12            | 12          | 0.72             | 15.0                           | 25.0                                      | 6.0                            | 44.0                  | 55                  |
| ARS2-SSM16     | M16            | 16          | 1.39             | 15.0                           | 25.0                                      | 6.0                            | 82.0                  | 104                 |
| ARS2-SSM20     | M20            | 19          | 2.23             | 15.0                           | 50.0                                      | 7.5                            | 127                   | 162                 |
| ARS2-SSM24     | M24            | 22          | 2.98             | 20.0                           | 50.0                                      | 7.5                            | 184                   | 233                 |
| ARS2-SSM30     | M30            | 28          | 4.83             | 20.0                           | 50.0                                      | 7.5                            | 292                   | 370                 |
| ARS2-SSM36     | M36            | 34          | 7.13             | 20.0                           | 50.0                                      | 7.5                            | 425                   | 539                 |
| ARS2-SSM42     | M42            | 39          | 9.38             | 25.0                           | 50.0                                      | 7.5                            | 583                   | 740                 |
| ARS2-SSM48     | M48            | 45          | 12.5             | 25.0                           | 50.0                                      | 7.5                            | 677                   | 898                 |
| ARS2-SSM56     | M56            | 52          | 16.7             | 25.0                           | 50.0                                      | 6.0                            | 933                   | 1279                |

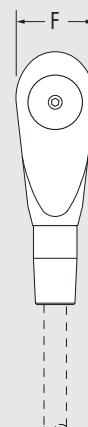
\* Larger sizes available upon request.

|            |     | in.   | lbs/ft | in.   | in.   | ft   | kips   | kips  |
|------------|-----|-------|--------|-------|-------|------|--------|-------|
| ARS2-SSM12 | M12 | 0.472 | 0.484  | 0.591 | 0.984 | 19.7 | 9.85   | 12.5  |
| ARS2-SSM16 | M16 | 0.630 | 0.934  | 0.591 | 0.984 | 19.7 | 18.3   | 23.3  |
| ARS2-SSM20 | M20 | 0.748 | 1.498  | 0.591 | 1.969 | 24.6 | 28.55  | 36.3  |
| ARS2-SSM24 | M24 | 0.866 | 2.002  | 0.787 | 1.969 | 24.6 | 41.36  | 52.3  |
| ARS2-SSM30 | M30 | 1.102 | 3.246  | 0.787 | 1.969 | 24.6 | 65.64  | 83.1  |
| ARS2-SSM36 | M36 | 1.339 | 4.791  | 0.787 | 1.969 | 24.6 | 95.54  | 121.2 |
| ARS2-SSM42 | M42 | 1.535 | 6.303  | 0.984 | 1.969 | 24.6 | 131.06 | 166.4 |
| ARS2-SSM48 | M48 | 1.772 | 8.386  | 0.984 | 1.969 | 24.6 | 152.20 | 201.9 |
| ARS2-SSM56 | M56 | 2.047 | 11.202 | 0.984 | 1.969 | 19.7 | 209.75 | 287.5 |

\* Joiners or turnbuckles may be used if maximum rod length material is not available and/or to reduce shipping costs or time.


\*\* Where Turnbuckle required order: ARS2-SSxxxTB




**ARS2 - Component Dimensions**

Fork Ends - Internal RH or LH Threads. Including Lock Covers.

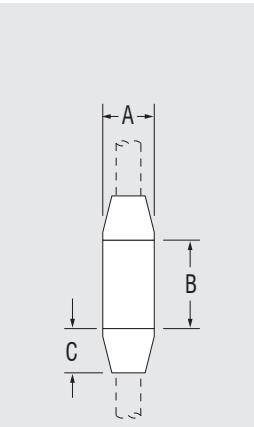
| THREAD<br>TYPE | ROD Ø | METRIC |    |     |    |     |     |      |
|----------------|-------|--------|----|-----|----|-----|-----|------|
|                |       | A      | B  | C   | D  | E   | F   |      |
| mm             | mm    | mm     | mm | mm  | mm | mm  | kg  |      |
| M12            | 12    | 14     | 21 | 25  | 12 | 94  | 32  | 0.43 |
| M16            | 16    | 16     | 27 | 30  | 16 | 111 | 43  | 0.94 |
| M20            | 19    | 19     | 33 | 42  | 20 | 139 | 51  | 1.61 |
| M24            | 22    | 24     | 41 | 50  | 24 | 159 | 62  | 2.24 |
| M30            | 28    | 30     | 52 | 59  | 30 | 187 | 79  | 4.26 |
| M36            | 34    | 36     | 61 | 68  | 36 | 211 | 93  | 5.79 |
| M42            | 39    | 39     | 69 | 78  | 42 | 234 | 107 | 13.1 |
| M48            | 45    | 44     | 78 | 87  | 48 | 248 | 121 | 16.2 |
| M56            | 52    | 49     | 96 | 105 | 56 | 292 | 145 | 23.9 |



| IMPERIAL |       |       |       |       |       |        |       |      |
|----------|-------|-------|-------|-------|-------|--------|-------|------|
|          | in.   | in.   | in.   | in.   | in.   | in.    | lbs   |      |
| M12      | 0.472 | 0.551 | 0.827 | 0.984 | 0.472 | 3.701  | 1.260 | 0.94 |
| M16      | 0.630 | 0.630 | 1.063 | 1.181 | 0.630 | 4.370  | 1.693 | 2.06 |
| M20      | 0.748 | 0.748 | 1.299 | 1.654 | 0.787 | 5.472  | 2.008 | 3.55 |
| M24      | 0.866 | 0.945 | 1.614 | 1.969 | 0.945 | 6.260  | 2.441 | 4.94 |
| M30      | 1.102 | 1.181 | 2.047 | 2.323 | 1.181 | 7.362  | 3.110 | 9.39 |
| M36      | 1.339 | 1.417 | 2.402 | 2.677 | 1.417 | 8.307  | 3.661 | 12.8 |
| M42      | 1.535 | 1.535 | 2.717 | 3.071 | 1.654 | 9.213  | 4.213 | 28.9 |
| M48      | 1.772 | 1.732 | 3.071 | 3.425 | 1.890 | 9.764  | 4.764 | 35.7 |
| M56      | 2.047 | 1.929 | 3.780 | 4.134 | 2.205 | 11.496 | 5.709 | 52.7 |



# STRUCTURAL ROD SYSTEM SPECIFICATIONS


## SS 520 ARS2 - S520 Stainless Steel Rods

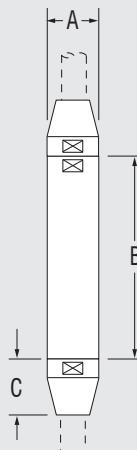
### ARS2 - Component Dimensions

#### ARS2 Joiners - Internal RH Threads Only.

Use Joiner for joining rods only.

| METRIC      |       |    |     |     |        | IMPERIAL    |       |       |       |       |        |
|-------------|-------|----|-----|-----|--------|-------------|-------|-------|-------|-------|--------|
| THREAD TYPE | ROD Ø | A  | B   | C   | WEIGHT | THREAD TYPE | ROD Ø | A     | B     | C     | WEIGHT |
|             | mm    | mm | mm  | mm  | kg     |             | in.   | in.   | in.   | in.   | lbs    |
| M12         | 12    | 18 | 37  | 30  | 0.11   | M12         | 0.472 | 0.709 | 1.457 | 1.181 | 0.24   |
| M16         | 16    | 24 | 45  | 33  | 0.22   | M16         | 0.630 | 0.945 | 1.772 | 1.299 | 0.49   |
| M20         | 19    | 29 | 53  | 78  | 0.36   | M20         | 0.748 | 1.142 | 2.087 | 3.071 | 0.80   |
| M24         | 22    | 35 | 64  | 84  | 0.54   | M24         | 0.866 | 1.378 | 2.520 | 3.307 | 1.19   |
| M30         | 28    | 43 | 75  | 87  | 0.94   | M30         | 1.102 | 1.693 | 2.953 | 3.425 | 2.07   |
| M36         | 34    | 52 | 89  | 93  | 1.58   | M36         | 1.339 | 2.047 | 3.504 | 3.661 | 3.48   |
| M42         | 39    | 60 | 100 | 102 | 2.14   | M42         | 1.535 | 2.362 | 3.937 | 4.016 | 4.72   |
| M48         | 45    | 68 | 115 | 105 | 3.22   | M48         | 1.772 | 2.677 | 4.528 | 4.094 | 7.1    |
| M56         | 52    | 80 | 135 | 106 | 4.74   | M56         | 2.047 | 3.150 | 5.315 | 4.173 | 10.5   |




\* Joiners or turnbuckles may be used if maximum rod length material is not available and/or to reduce shipping costs or time.

\*\* Where joiner required order: ARS2-SSxxxJ.

#### Turnbuckle Dimensions - Internal RH & LH Threads. Including Lock Nuts.

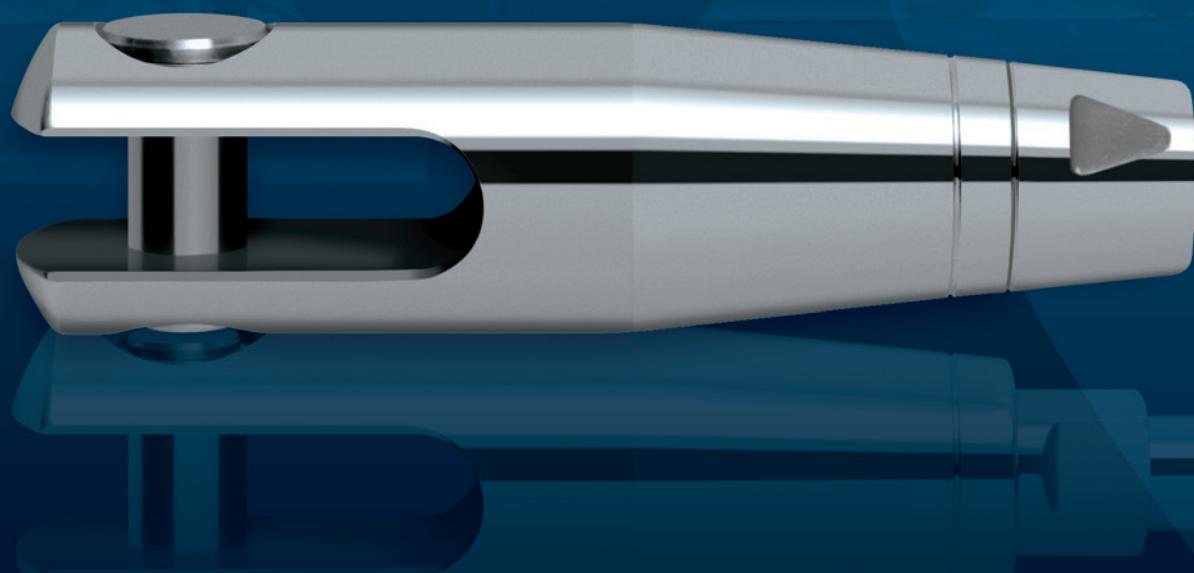
Use Turnbuckle where extra adjustment required or for rod joining.

| METRIC      |       |    |     |     |        | IMPERIAL    |       |       |       |       |        |
|-------------|-------|----|-----|-----|--------|-------------|-------|-------|-------|-------|--------|
| THREAD TYPE | ROD Ø | A  | B   | C   | WEIGHT | THREAD TYPE | ROD Ø | A     | B     | C     | WEIGHT |
|             | mm    | mm | mm  | mm  | kg     |             | in.   | in.   | in.   | in.   | lbs    |
| M12         | 12    | 18 | 70  | 30  | 0.13   | M12         | 0.472 | 0.709 | 2.756 | 1.181 | 0.29   |
| M16         | 16    | 24 | 85  | 33  | 0.19   | M16         | 0.630 | 0.945 | 3.346 | 1.299 | 0.42   |
| M20         | 19    | 29 | 144 | 78  | 0.64   | M20         | 0.748 | 1.142 | 5.669 | 3.071 | 1.42   |
| M24         | 22    | 35 | 155 | 84  | 1.0    | M24         | 0.866 | 1.378 | 6.102 | 3.307 | 2.11   |
| M30         | 28    | 43 | 170 | 87  | 1.8    | M30         | 1.102 | 1.693 | 6.693 | 3.425 | 3.88   |
| M36         | 34    | 52 | 180 | 93  | 2.7    | M36         | 1.339 | 2.047 | 7.087 | 3.661 | 5.85   |
| M42         | 39    | 60 | 195 | 102 | 3.8    | M42         | 1.535 | 2.362 | 7.677 | 4.016 | 8.43   |
| M48         | 45    | 68 | 210 | 105 | 5.2    | M48         | 1.772 | 2.677 | 8.268 | 4.134 | 11.6   |
| M56         | 52    | 80 | 230 | 106 | 7.9    | M56         | 2.047 | 3.150 | 9.055 | 4.173 | 17.3   |



\* Joiners or turnbuckles may be used if maximum rod length material is not available and/or to reduce shipping costs or time.

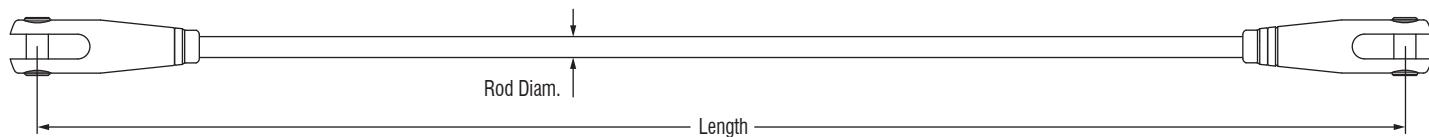
\*\* Where Turnbuckle required order: ARS2-SSxxxTB.


# 316 Stainless Steel Rods

## ARS3

The industry benchmark. ARS3 is known world-wide as one of the original stainless rod systems. It marries the qualities of timeless aesthetics, lasting good looks, corrosion resistance and strength, in an economical and functional stainless rod tendon. So if a moderate static load needs to be carried or braced between two points, with simple efficiency and good looks at the same time, ARS3 should be the rod of choice.

And the philosophy behind ARS3's enduring appeal - no compromise on quality, with an electropolished finish now as standard for long lasting performance.


**ARS3 - An efficient, economical rod for moderate loads.**



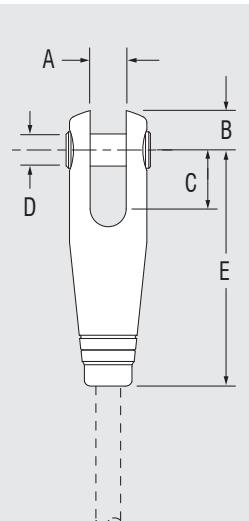
# STRUCTURAL ROD SYSTEM SPECIFICATIONS

## SS 316 ARS3 - 316 Stainless Steel Rods

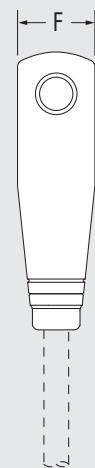
### ARS3 - Systems



| PRODUCT<br>No. | THREAD<br>TYPE | ROD Ø<br>mm | ROD MASS<br>kg/m | ADJUSTMENT<br>± PER ASSY<br>mm | *MAX SINGLE<br>BAR LENGTH<br>m | METRIC                |                     |
|----------------|----------------|-------------|------------------|--------------------------------|--------------------------------|-----------------------|---------------------|
|                |                |             |                  |                                |                                | MIN. YIELD LOAD<br>kN | MIN. ULT LOAD<br>kN |
| ARS3-SS-03     | # 10-32 UNF    | 4.76        | 0.14             | 13.0                           | 4.0                            | 4.4                   | 8.7                 |
| ARS3-SS-04     | 1/4" UNF       | 6.35        | 0.25             | 13.0                           | 4.0                            | 8                     | 16                  |
| ARS3-SS-05     | 5/16" UNF      | 7.93        | 0.39             | 17.0                           | 4.0                            | 13                    | 26                  |
| ARS3-SS-06     | 3/8" UNF       | 9.53        | 0.56             | 21.0                           | 4.0                            | 16                    | 33                  |
| ARS3-SS-08     | 1/2" UNF       | 12.70       | 1.00             | 29.0                           | 4.0                            | 27                    | 53                  |
| ARS3-SS-10     | 5/8" UNF       | 15.88       | 1.56             | 37.0                           | 4.0                            | 42                    | 85                  |
| ARS3-SS-12     | 3/4" UNF       | 19.05       | 2.25             | 47.0                           | 6.0                            | 62                    | 124                 |
| ARS3-SS-14     | 7/8" UNF       | 22.23       | 3.06             | 55.0                           | 6.0                            | 85                    | 169                 |
| ARS3-SS-16     | 1" UNF         | 25.40       | 4.0              | 64.0                           | 6.0                            | 110                   | 220                 |
| ARS3-SS-20     | 1 1/4" UNF     | 31.75       | 6.3              | 64.0                           | 6.0                            | 178                   | 356                 |


|            | in.   | lbs/ft | in.   | ft   | IMPERIAL |       |
|------------|-------|--------|-------|------|----------|-------|
|            |       |        |       |      | kips     | kips  |
| ARS3-SS-03 | 0.188 | 0.094  | 0.512 | 13.1 | 0.99     | 1.96  |
| ARS3-SS-04 | 0.250 | 0.168  | 0.512 | 13.1 | 1.80     | 3.60  |
| ARS3-SS-05 | 0.312 | 0.262  | 0.669 | 13.1 | 2.92     | 5.85  |
| ARS3-SS-06 | 0.375 | 0.378  | 0.827 | 13.1 | 3.60     | 7.42  |
| ARS3-SS-08 | 0.500 | 0.673  | 1.142 | 13.1 | 6.07     | 11.91 |
| ARS3-SS-10 | 0.625 | 1.051  | 1.457 | 13.1 | 9.44     | 19.11 |
| ARS3-SS-12 | 0.750 | 1.513  | 1.850 | 19.7 | 13.94    | 27.88 |
| ARS3-SS-14 | 0.875 | 2.060  | 2.165 | 19.7 | 19.11    | 37.99 |
| ARS3-SS-16 | 1.000 | 2.690  | 2.520 | 19.7 | 24.73    | 49.46 |
| ARS3-SS-20 | 1.250 | 4.203  | 2.520 | 19.7 | 40.02    | 80.03 |

\* Joiner(s) may be used if maximum rod length material is not available and/or to reduce shipping costs or time.


## ARS3 - Component Dimensions

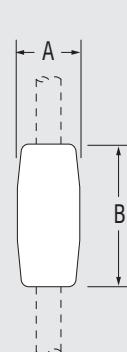
Fork Ends - Internal RH or LH Threads. Including Lock Nuts.

| THREAD<br>TYPE | ROD Ø | METRIC |      |      |      |       |      |      |
|----------------|-------|--------|------|------|------|-------|------|------|
|                |       | A      | B    | C    | D    | E     | F    |      |
| mm             | mm    | mm     | mm   | mm   | mm   | mm    | g    |      |
| 10/32" UNF     | 4.76  | 6.0    | 7.0  | 9.0  | 4.7  | 40.0  | 10.6 | 30   |
| 1/4" UNF       | 6.35  | 7.0    | 9.0  | 11.0 | 6.4  | 46.0  | 13.5 | 40   |
| 5/16" UNF      | 7.93  | 8.5    | 10.8 | 13.2 | 7.9  | 55.0  | 16.7 | 80   |
| 3/8" UNF       | 9.53  | 10.0   | 12.0 | 18.0 | 9.5  | 70.0  | 19.3 | 130  |
| 1/2" UNF       | 12.70 | 14.0   | 16.0 | 24.0 | 12.7 | 95.0  | 28.1 | 370  |
| 5/8" UNF       | 15.88 | 18.0   | 20.0 | 30.0 | 15.9 | 119.0 | 35.1 | 710  |
| 3/4" UNF       | 19.05 | 22.0   | 24.0 | 38.0 | 19.1 | 149.0 | 41.1 | 1250 |
| 7/8" UNF       | 22.23 | 24.0   | 28.0 | 45.0 | 22.2 | 171.0 | 45.5 | 1700 |
| 1" UNF         | 25.40 | 26.0   | 32.0 | 53.0 | 25.4 | 198.0 | 55.7 | 2900 |
| 1 1/4" UNF     | 31.75 | 32.0   | 40.0 | 66.0 | 31.8 | 229.0 | 66.4 | 4200 |



| IMPERIAL   |       |       |       |       |       |       |       |       |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|
|            | in.   | in.   | in.   | in.   | in.   | in.   | oz    |       |
| 10/32" UNF | 0.188 | 0.236 | 0.276 | 0.354 | 0.187 | 1.575 | 0.417 | 1.1   |
| 1/4" UNF   | 0.250 | 0.276 | 0.354 | 0.433 | 0.250 | 1.811 | 0.531 | 1.4   |
| 5/16" UNF  | 0.312 | 0.335 | 0.425 | 0.520 | 0.312 | 2.165 | 0.657 | 2.8   |
| 3/8" UNF   | 0.375 | 0.394 | 0.472 | 0.709 | 0.375 | 2.756 | 0.760 | 4.6   |
| 1/2" UNF   | 0.500 | 0.551 | 0.630 | 0.945 | 0.500 | 3.740 | 1.106 | 13.1  |
| 5/8" UNF   | 0.625 | 0.709 | 0.787 | 1.181 | 0.625 | 4.685 | 1.382 | 25.0  |
| 3/4" UNF   | 0.750 | 0.866 | 0.945 | 1.496 | 0.750 | 5.866 | 1.618 | 44.1  |
| 7/8" UNF   | 0.875 | 0.945 | 1.102 | 1.772 | 0.875 | 6.732 | 1.791 | 60.0  |
| 1" UNF     | 1.000 | 1.024 | 1.260 | 2.087 | 1.000 | 7.795 | 2.193 | 102.3 |
| 1 1/4" UNF | 1.250 | 1.260 | 1.575 | 2.598 | 1.250 | 9.016 | 2.614 | 148.1 |




# STRUCTURAL ROD SYSTEM SPECIFICATIONS

## SS 316 ARS3 - 316 Stainless Steel Rods

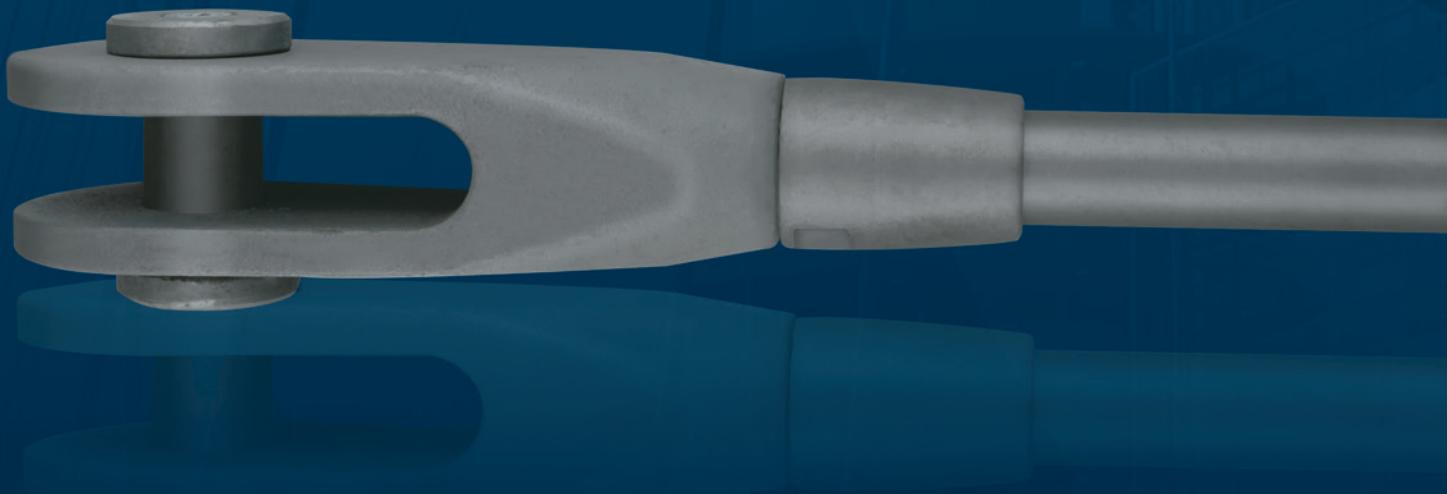
### ARS3 - Component Dimensions

Joiners - Internal RH & LH Threads.

| ROD Ø | THREAD TYPE | A    |       | WEIGHT | METRIC |
|-------|-------------|------|-------|--------|--------|
|       |             | mm   | mm    |        | mm     |
| 4.76  | 10/32" UNF  | 7.8  | 18.0  | 7      |        |
| 6.35  | 1/4" UNF    | 10.0 | 24.0  | 10     |        |
| 7.93  | 5/16" UNF   | 12.5 | 32.0  | 20     |        |
| 9.53  | 3/8" UNF    | 14.2 | 38.0  | 25     |        |
| 12.70 | 1/2" UNF    | 19.8 | 50.0  | 65     |        |
| 15.88 | 5/8" UNF    | 23.8 | 60.0  | 110    |        |
| 19.05 | 3/4" UNF    | 30.0 | 72.0  | 270    |        |
| 22.23 | 7/8" UNF    | 34.5 | 83.0  | 330    |        |
| 25.40 | 1" UNF      | 39.5 | 90.0  | 460    |        |
| 31.75 | 1 1/4" UNF  | 50.0 | 112.0 | 680    |        |



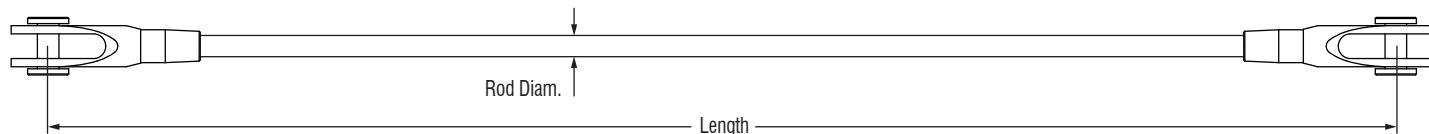
| IMPERIAL |            |       |      |
|----------|------------|-------|------|
| in.      | in.        | in.   | oz   |
| 0.188    | 10/32" UNF | 0.307 | 0.2  |
| 0.250    | 1/4" UNF   | 0.394 | 0.4  |
| 0.312    | 5/16" UNF  | 0.492 | 0.7  |
| 0.375    | 3/8" UNF   | 0.559 | 0.9  |
| 0.500    | 1/2" UNF   | 0.780 | 2.3  |
| 0.625    | 5/8" UNF   | 0.937 | 3.9  |
| 0.750    | 3/4" UNF   | 1.181 | 9.5  |
| 0.875    | 7/8" UNF   | 1.358 | 11.7 |
| 1.000    | 1" UNF     | 1.555 | 16.3 |
| 1.250    | 1 1/4" UNF | 1.969 | 24.0 |




## 520 Carbon Steel Rods

# ARS4

The latest innovative development in carbon steel rod tendons, ARS4 now has even higher load capacity with its grade 520 minimum yield carbon steel. The hero of the Ronstan range, ARS4 is ideal for those high load applications where a simple, efficient and minimalist carbon steel rod solution is required. ARS4 rod tendons can be used to replace heavy steel structure with a lightweight tendon that can be painted or finished to blend into the surrounding structure.


**ARS4 - The carbon steel rod of unparalleled tensile strength.**



# STRUCTURAL ROD SYSTEM SPECIFICATIONS

**CS 520** ARS4 - 520 Carbon Steel Rods

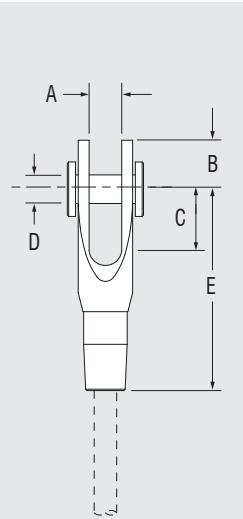
## ARS4 - Systems



| PRODUCT<br>No. | THREAD<br>TYPE | ROD Ø<br>mm | ROD MASS<br>kg/m | ADJUSTMENT<br>± PER ASSY<br>mm | **Adjustment ±<br>PER TB<br>mm | *MAX SINGLE<br>BAR LENGTH<br>m | METRIC                   |                     |
|----------------|----------------|-------------|------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------|---------------------|
|                |                |             |                  |                                |                                |                                | MIN. YIELD<br>LOAD<br>kN | MIN. ULT LOAD<br>kN |
| ARS4-CSM12     | M12            | 12          | 0.72             | 15.0                           | 25.0                           | 6.0                            | 30.0                     | 52                  |
| ARS4-CSM16     | M16            | 16          | 1.39             | 15.0                           | 25.0                           | 6.0                            | 82.0                     | 102                 |
| ARS4-CSM20     | M20            | 19          | 2.23             | 15.0                           | 50.0                           | 12.0                           | 127                      | 159                 |
| ARS4-CSM24     | M24            | 22          | 2.98             | 20.0                           | 50.0                           | 12.0                           | 184                      | 229                 |
| ARS4-CSM30     | M30            | 28          | 4.83             | 20.0                           | 50.0                           | 12.0                           | 292                      | 364                 |
| ARS4-CSM36     | M36            | 34          | 7.13             | 20.0                           | 50.0                           | 12.0                           | 425                      | 531                 |
| ARS4-CSM42     | M42            | 39          | 9.38             | 25.0                           | 50.0                           | 12.0                           | 583                      | 729                 |
| ARS4-CSM48     | M48            | 45          | 12.5             | 25.0                           | 50.0                           | 12.0                           | 766                      | 958                 |
| ARS4-CSM56     | M56            | 52          | 16.7             | 25.0                           | 50.0                           | 12.0                           | 1056                     | 1320                |
| ARS4-CSM64     | M64            | 60          | 21.5             | 0.0                            | 50.0                           | 12.0                           | 1392                     | 1739                |
| ARS4-CSM76     | M76            | 72          | 32.0             | 0.0                            | 50.0                           | 12.0                           | 1999                     | 2528                |
| ARS4-CSM90     | M90            | 85          | 44.5             | 0.0                            | 50.0                           | 12.0                           | 2879                     | 3634                |
| ARS4-CSM100    | M100           | 97          | 56.8             | 0.0                            | 50.0                           | 12.0                           | 3605                     | 4547                |

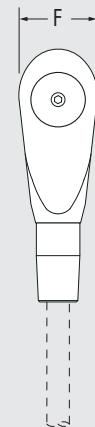
|             |      | in.   | lbs/ft | in.   | in.   | ft   | kips | kips |
|-------------|------|-------|--------|-------|-------|------|------|------|
| ARS4-CSM12  | M12  | 0.472 | 0.484  | 0.591 | 0.984 | 19.7 | 6.72 | 11.6 |
| ARS4-CSM16  | M16  | 0.630 | 0.934  | 0.591 | 0.984 | 19.7 | 18.3 | 22.9 |
| ARS4-CSM20  | M20  | 0.748 | 1.498  | 0.591 | 1.969 | 39.4 | 28.6 | 35.8 |
| ARS4-CSM24  | M24  | 0.866 | 2.002  | 0.787 | 1.969 | 39.4 | 41.2 | 51.5 |
| ARS4-CSM30  | M30  | 1.102 | 3.246  | 0.787 | 1.969 | 39.4 | 65.5 | 81.9 |
| ARS4-CSM36  | M36  | 1.339 | 4.791  | 0.787 | 1.969 | 39.4 | 95.4 | 119  |
| ARS4-CSM42  | M42  | 1.535 | 6.303  | 0.984 | 1.969 | 39.4 | 131  | 164  |
| ARS4-CSM48  | M48  | 1.772 | 8.386  | 0.984 | 1.969 | 39.4 | 172  | 215  |
| ARS4-CSM56  | M56  | 2.047 | 11.202 | 0.984 | 1.969 | 39.4 | 237  | 297  |
| ARS4-CSM64  | M64  | 2.362 | 14.420 | 0.000 | 1.969 | 39.4 | 313  | 391  |
| ARS4-CSM76  | M76  | 2.835 | 21.476 | 0.000 | 1.969 | 39.4 | 449  | 568  |
| ARS4-CSM90  | M90  | 3.346 | 29.929 | 0.000 | 1.969 | 39.4 | 647  | 817  |
| ARS4-CSM100 | M100 | 3.819 | 38.181 | 0.000 | 1.969 | 39.4 | 810  | 1022 |

\* Joiners or turnbuckles may be used if maximum rod length material is not available and/or to reduce shipping costs or time.


\*\* Where Turnbuckle required order: ARS4-CSxxxTB



## ARS4 - Component Dimensions


Fork Ends - Internal RH or LH Threads. Including Lock Covers.

| THREAD<br>TYPE | ROD Ø | METRIC |     |     |     |     |     |       |
|----------------|-------|--------|-----|-----|-----|-----|-----|-------|
|                |       | A      | B   | C   | D   | E   | F   |       |
|                | mm    | mm     | mm  | mm  | mm  | mm  | kg  |       |
| M12            | 12    | 14     | 21  | 25  | 12  | 94  | 32  | 0.426 |
| M16            | 16    | 16     | 27  | 30  | 16  | 111 | 43  | 0.935 |
| M20            | 19    | 19     | 33  | 42  | 20  | 139 | 51  | 1.61  |
| M24            | 22    | 24     | 41  | 50  | 24  | 159 | 62  | 2.24  |
| M30            | 28    | 30     | 52  | 59  | 30  | 187 | 79  | 4.26  |
| M36            | 34    | 36     | 61  | 68  | 36  | 211 | 93  | 5.79  |
| M42            | 39    | 39     | 69  | 78  | 42  | 234 | 107 | 13.1  |
| M48            | 45    | 44     | 78  | 87  | 48  | 248 | 121 | 16.2  |
| M56            | 52    | 49     | 96  | 105 | 56  | 283 | 145 | 23.9  |
| M64            | 60    | 59     | 110 | 120 | 64  | 323 | 167 | 33.4  |
| M76            | 72    | 76     | 131 | 141 | 76  | 380 | 199 | 52.2  |
| M90            | 85    | 86     | 161 | 171 | 94  | 463 | 246 | 76    |
| M100           | 97    | 91     | 188 | 197 | 109 | 521 | 287 | 108   |



## IMPERIAL

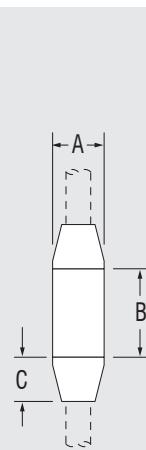
|      | in.   | in.   | in.   | in.   | in.   | in.    | in.    | oz   |
|------|-------|-------|-------|-------|-------|--------|--------|------|
| M12  | 0.472 | 0.551 | 0.827 | 0.984 | 0.472 | 3.701  | 1.260  | 0.94 |
| M16  | 0.630 | 0.630 | 1.063 | 1.181 | 0.630 | 4.370  | 1.693  | 2.06 |
| M20  | 0.748 | 0.748 | 1.299 | 1.654 | 0.787 | 5.472  | 2.008  | 3.55 |
| M24  | 0.866 | 0.945 | 1.614 | 1.969 | 0.945 | 6.260  | 2.441  | 4.94 |
| M30  | 1.102 | 1.181 | 2.047 | 2.323 | 1.181 | 7.362  | 3.110  | 9.39 |
| M36  | 1.339 | 1.417 | 2.402 | 2.677 | 1.417 | 8.307  | 3.661  | 12.8 |
| M42  | 1.535 | 1.535 | 2.717 | 3.071 | 1.654 | 9.213  | 4.213  | 28.9 |
| M48  | 1.772 | 1.732 | 3.071 | 3.425 | 1.890 | 9.764  | 4.764  | 35.7 |
| M56  | 2.047 | 1.929 | 3.780 | 4.134 | 2.205 | 11.142 | 5.709  | 52.7 |
| M64  | 2.362 | 2.323 | 4.331 | 4.724 | 2.520 | 12.717 | 6.575  | 73.6 |
| M76  | 2.835 | 2.992 | 5.157 | 5.551 | 2.992 | 14.961 | 7.835  | 115  |
| M90  | 3.346 | 3.386 | 6.339 | 6.732 | 3.701 | 18.228 | 9.685  | 168  |
| M100 | 3.819 | 3.583 | 7.402 | 7.756 | 4.291 | 20.512 | 11.299 | 238  |



# STRUCTURAL ROD SYSTEM SPECIFICATIONS

## CS 520 ARS4 - 520 Carbon Steel Rods

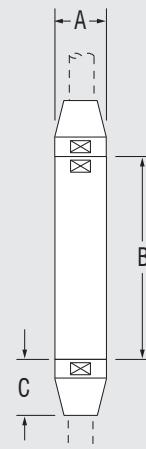
### ARS4 - Component Dimensions


**Joiners** - Internal RH Threads Only. Including Lock Covers

Use joiners for connecting rods only.

| METRIC      |       |     |     |     |        | IMPERIAL    |       |       |       |       |        |
|-------------|-------|-----|-----|-----|--------|-------------|-------|-------|-------|-------|--------|
| THREAD TYPE | ROD Ø | A   | B   | C   | WEIGHT | THREAD TYPE | ROD Ø | A     | B     | C     | WEIGHT |
|             | mm    | mm  | mm  | mm  | g      |             | in.   | in.   | in.   | in.   | lbs    |
| M12         | 12    | 18  | 37  | 25  | 0.11   | M12         | 0.472 | 0.709 | 1.457 | 0.984 | 0.24   |
| M16         | 16    | 24  | 45  | 26  | 0.22   | M16         | 0.630 | 0.945 | 1.772 | 1.024 | 0.49   |
| M20         | 19    | 29  | 53  | 40  | 0.36   | M20         | 0.748 | 1.142 | 2.087 | 1.575 | 0.80   |
| M24         | 22    | 35  | 64  | 45  | 0.54   | M24         | 0.866 | 1.378 | 2.520 | 1.772 | 1.19   |
| M30         | 28    | 43  | 75  | 50  | 0.94   | M30         | 1.102 | 1.693 | 2.953 | 1.969 | 2.07   |
| M36         | 34    | 52  | 89  | 55  | 1.58   | M36         | 1.339 | 2.047 | 3.504 | 2.165 | 3.48   |
| M42         | 39    | 60  | 100 | 60  | 2.14   | M42         | 1.535 | 2.362 | 3.937 | 2.362 | 4.72   |
| M48         | 45    | 68  | 115 | 60  | 3.22   | M48         | 1.772 | 2.677 | 4.528 | 2.362 | 7.1    |
| M56         | 52    | 80  | 135 | 75  | 4.74   | M56         | 2.047 | 3.150 | 5.315 | 2.953 | 10.4   |
| M64         | 60    | 91  | 145 | 85  | 6.74   | M64         | 2.362 | 3.583 | 5.709 | 3.346 | 14.9   |
| M76         | 72    | 108 | 165 | 91  | 10.5   | M76         | 2.835 | 4.252 | 6.496 | 3.583 | 23.2   |
| M90         | 85    | 129 | 195 | 126 | 17.3   | M90         | 3.425 | 5.079 | 7.677 | 4.961 | 38.1   |
| M100        | 97    | 143 | 215 | 134 | 24.2   | M100        | 3.819 | 5.630 | 8.465 | 5.276 | 53.4   |

\* Joiners or turnbuckles may be used if maximum rod length material is not available and/or to reduce shipping costs or time.


\*\* Where Joiner required order: ARS4-CSxxxJ.



**Turnbuckle** - Internal RH & LH Threads. Including Lock Covers.

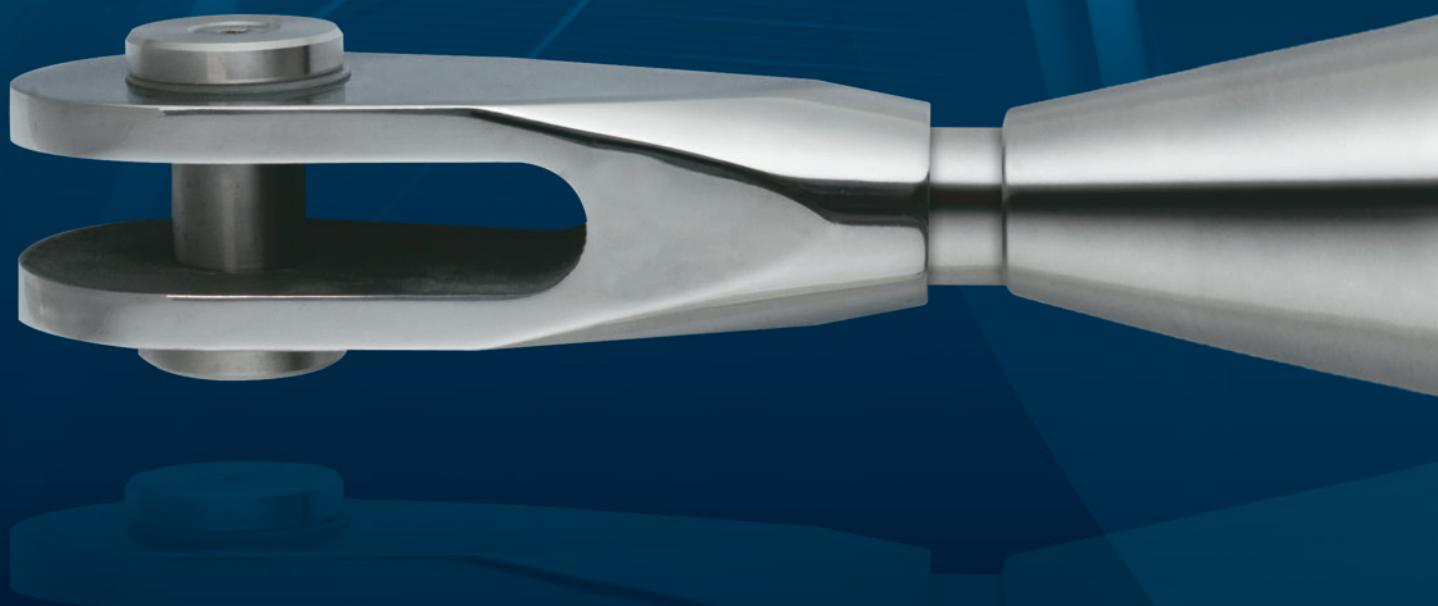
Use turnbuckles where additional adjustment is required.

| METRIC      |       |     |     |     |        |
|-------------|-------|-----|-----|-----|--------|
| THREAD TYPE | ROD Ø | A   | B   | C   | WEIGHT |
|             | mm    | mm  | mm  | mm  | kg     |
| M12         | 12    | 18  | 70  | 30  | 0.13   |
| M16         | 16    | 24  | 85  | 33  | 0.19   |
| M20         | 19    | 29  | 144 | 78  | 0.64   |
| M24         | 22    | 35  | 155 | 84  | 1.0    |
| M30         | 28    | 43  | 170 | 87  | 1.8    |
| M36         | 34    | 52  | 180 | 93  | 2.7    |
| M42         | 39    | 60  | 195 | 102 | 3.8    |
| M48         | 45    | 68  | 210 | 105 | 5.2    |
| M56         | 52    | 80  | 230 | 106 | 7.9    |
| M64         | 60    | 91  | 240 | 112 | 10.4   |
| M76         | 72    | 108 | 268 | 118 | 16.1   |
| M90         | 85    | 129 | 290 | 153 | 26.2   |
| M100        | 97    | 143 | 315 | 160 | 34.1   |



| IMPERIAL |       |       |        |       |      |
|----------|-------|-------|--------|-------|------|
|          | in.   | in.   | in.    | in.   | lbs  |
| M12      | 0.472 | 0.709 | 2.756  | 1.181 | 0.29 |
| M16      | 0.630 | 0.866 | 3.346  | 1.299 | 0.42 |
| M20      | 0.748 | 1.142 | 5.669  | 3.071 | 1.42 |
| M24      | 0.866 | 1.378 | 6.102  | 3.307 | 2.11 |
| M30      | 1.102 | 1.693 | 6.693  | 3.425 | 3.88 |
| M36      | 1.339 | 2.047 | 7.087  | 3.661 | 5.85 |
| M42      | 1.535 | 2.362 | 7.677  | 4.016 | 8.43 |
| M48      | 1.772 | 2.677 | 8.268  | 4.134 | 11.6 |
| M56      | 2.047 | 3.150 | 9.055  | 4.173 | 17.3 |
| M64      | 2.362 | 3.583 | 9.449  | 4.409 | 22.9 |
| M76      | 2.835 | 4.252 | 10.551 | 4.646 | 35.5 |
| M90      | 3.425 | 5.079 | 11.417 | 6.024 | 57.7 |
| M100     | 3.819 | 5.630 | 12.402 | 6.299 | 75.2 |

\* Joiners or turnbuckles may be used if maximum rod length material is not available and/or to reduce shipping costs or time.


\*\* Where Turnbuckle required order: ARS4-CSxxxTB.

# 355 Carbon Steel & 316 Stainless Steel Structural Compression Struts

## ARS6

To compliment our existing tension bar ranges, Ronstan now offer a range of adjustable compression struts. A compression strut comprises a central tubular section with a welded cone at either end and a threaded fork and pin end. Styling uniformity with the ARS2 and ARS4 ranges is maintained by using the same threaded fork ends in the welded cones of the ARS6 compression struts. Whether your loads are compressive or both compressive and tensile in nature, the ARS6 is the perfect product to meet these loading conditions.

**ARS6 – The carbon or stainless steel product solution for compressive loads.**



# ARS6 SYSTEM OPTIONS

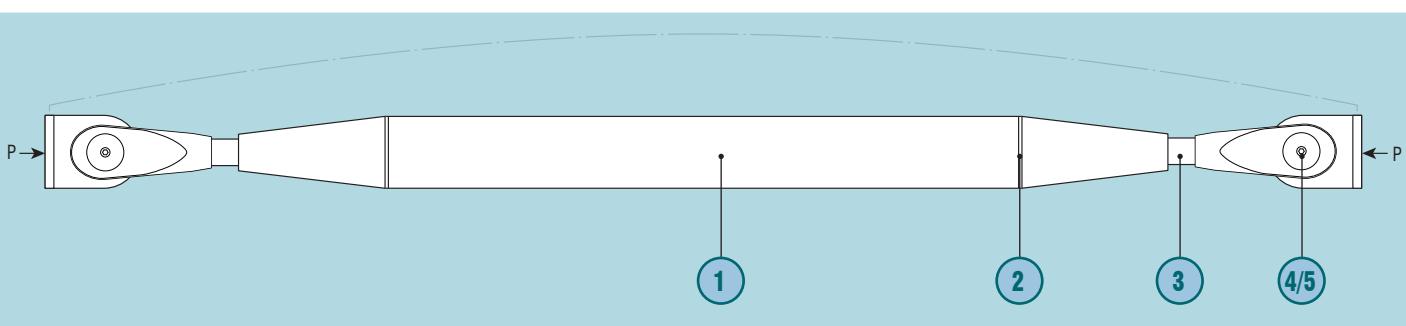
## Materials & Properties

### ARS6 - 316 Stainless Steel and S355JR Carbon Steel Compression Struts

SS 316  
CS 355



#### Compression struts for structural design in steel and timber construction


|                                |                                                                                                          |
|--------------------------------|----------------------------------------------------------------------------------------------------------|
| <b>Lengths &amp; Diameters</b> | Wide range of sizes, load values & resulting span lengths achievable. See tables on the following pages. |
| <b>Carbon steel</b>            | - up to 12m (39.4ft) length                                                                              |
| <b>Stainless steel</b>         | - up to 6m (19.6ft) length                                                                               |
| <b>Finishes</b>                | Electropolished, to ASTM A380/A967/B912. Others by request.                                              |
| <b>Threads to</b>              | BS3643                                                                                                   |
| <b>Threads</b>                 | Stainless Steel M12 to M56 (0.472" - 2.205")<br>Carbon steel M12 to M100 (0.472" - 3.940")               |

#### TYPICAL SPECIFICATION EXAMPLES

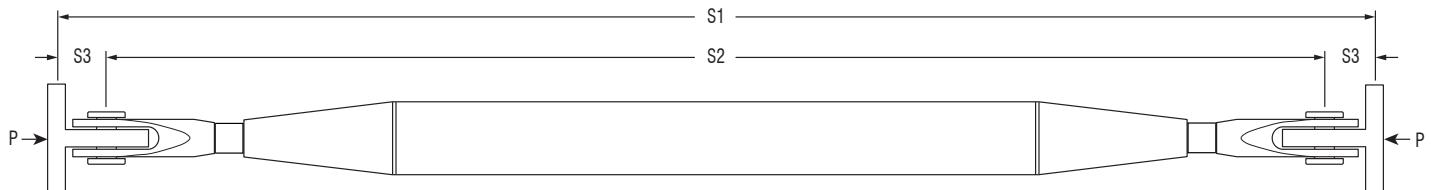
- Ronstan ARS6-CSM30 Carbon steel compression strut 76.1 x 5 CHS Raw - 3500mm pin to pin length Qty 10
- Ronstan ARS6-GSM42 Carbon steel compression strut 114.3 x 5 CHS Galvanized 2550mm pin to pin length Qty 4
- Ronstan ARS6-PSM42 Carbon steel compression strut 114.3 x 5 CHS Painted 10500mm pin to pin length Qty 2
- Ronstan ARS6-SSM20 Stainless steel compression strut 48.3 x 5 CHS - Satin #4 6ft 4inch pin to pin length Qty 20

#### SPECIFIC FEATURES

- Range of adjustable compression struts to complement our existing tensile threaded bar systems.
- A compression strut comprises a central tubular section with a welded cone at either end and a threaded fork and pin end.
- End fittings are the same style as ASR2 & ARS4 end fittings for common appearance throughout a specific project.
- All threads concealed under adjustable end fittings.
- Standard compression strut systems are available in both Carbon steel and Stainless steel.
- The Carbon steel system can be supplied as raw steel, hot dip galvanised or blast / primer painted for final top coat.
- The Stainless steel system is supplied standard with a satin polish, other finishes available upon request.
- Structural design service of compression strut systems available.
- Please contact us for Structural design assistance with your project details and for pricing.
- Certified to Execution Class 2 (EXC2) BS EN 1090-2:2008 + A1:2011



#### BASIC PRINCIPALS


- A compression strut comprises a central tubular section with a threaded taper connection welded at each end.
- The taper connection is assembled with a threaded fork/pin end connection and threaded lock cover.
- The threaded fork end connection enables the compression strut to be adjusted in length. The nominal strut adjustment length is +/- 50 mm.
- The tapered lock cover and machined cone conceal the threads.
- The installed compression strut is fixed to the final length by use of a grub screw set into the cone.
- The strut system is designed in accordance with EN1993-1-1 and EN1993 -1-8 and their respective UK National Annexes.
- The ultimate capacities quoted take account of self-weight bending of the strut in accordance with equation 6.10, Table NA.A1.2(B) UK National Annex to EN1990.

#### CRITICAL SECTIONS

- CHS Verification**  
Section Capacity (combined bending & axial)
- Interface between CHS & Welded Cone**  
Weld size required
- Threaded Bar**  
Combined bending & axial  
Axial resistance of thread
- Fork**  
Combined bending & axial (major axis only)
- Pin**  
Combined Bending & Shear

NB: Reference to 'bending' above means the summation of strut buckling and self-weight bending effects. All material factors are as the UK National Annex.

## ARS6 - Systems



## Stainless Steel – Stainless steel G316 tubes: BS EN10296-1

|                                  | METRIC                             |        |        |        |        |        |           |          |          |
|----------------------------------|------------------------------------|--------|--------|--------|--------|--------|-----------|----------|----------|
| Fork/Bar Sizes                   | M12                                | M16    | M20    | M24    | M30    | M36    | M42       | M48      | M56      |
| <b>CHS Size</b><br>(Dia. x t mm) | 33.7x4                             | 42.4x4 | 48.3x5 | 60.3x5 | 76.1x5 | 88.9x5 | 114.3x6.3 | 139.7x10 | 168.3x10 |
| <b>S1 (m)</b>                    | <b>P — Design Resistance in kN</b> |        |        |        |        |        |           |          |          |
| 1.5                              | 6                                  | 18     | 39     | 78     | 159    | 270    | 382       | 426      | 772      |
| 2                                |                                    | 12     | 26     | 48     | 123    | 261    | 382       | 426      | 772      |
| 2.5                              |                                    | 10     | 19     | 35     | 84     | 178    | 382       | 426      | 772      |
| 3                                |                                    |        | 16     | 27     | 65     | 133    | 287       | 400      | 772      |
| 3.5                              |                                    |        | 13     | 23     | 53     | 107    | 222       | 388      | 772      |
| 4                                |                                    |        | 12     | 20     | 45     | 90     | 181       | 327      | 636      |
| 4.5                              |                                    |        | 10     | 17     | 39     | 78     | 154       | 275      | 523      |
| 5                                |                                    |        |        | 16     | 35     | 67     | 134       | 237      | 441      |
| 5.5                              |                                    |        |        | 14     | 32     | 55     | 119       | 208      | 381      |
| 6                                |                                    |        |        | 12     | 27     | 45     | 108       | 187      | 336      |
| <b>S3 (mm) max</b>               | 50                                 | 50     | 50     | 75     | 100    | 100    | 100       | 125      | 125      |
| Minimum assy lengths             |                                    |        |        |        |        |        |           |          |          |
| <b>S2 (mm) min</b>               | 296                                |        |        |        |        |        |           |          |          |
|                                  | 350                                | 394    | 454    | 542    | 614    | 726    | 820       |          |          |

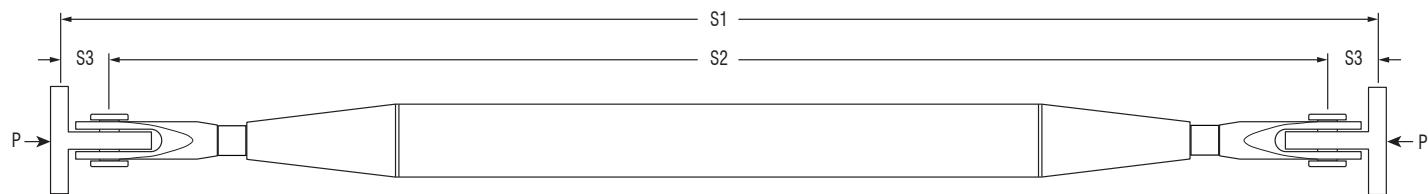
## Stainless Steel – Stainless steel G316 tubes: BS EN10296-1

|                                    | IMPERIAL                            |               |               |               |               |             |             |             |               |
|------------------------------------|-------------------------------------|---------------|---------------|---------------|---------------|-------------|-------------|-------------|---------------|
| Fork/Bar Sizes                     | M12                                 | M16           | M20           | M24           | M30           | M36         | M42         | M48         | M56           |
| <b>CHS Size</b><br>(Dia. x wt in.) | 1.327 x 0.157                       | 1.661 x 0.157 | 1.902 x 0.197 | 2.374 x 0.197 | 2.996 x 0.197 | 3.5 x 0.197 | 4.5 x 0.248 | 5.5 x 0.394 | 6.626 x 0.394 |
| <b>S1 (ft)</b>                     | <b>P — Design Resistance in kip</b> |               |               |               |               |             |             |             |               |
| 4.921                              | 1.348                               | 4.045         | 8.765         | 17.529        | 35.732        | 60.678      | 85.848      | 95.736      | 173.493       |
| 6.562                              |                                     | 2.697         | 5.843         | 10.787        | 27.642        | 58.655      | 85.848      | 95.736      | 173.493       |
| 8.202                              |                                     | 2.247         | 4.270         | 7.866         | 18.877        | 40.002      | 85.848      | 95.736      | 173.493       |
| 9.843                              |                                     |               | 3.596         | 6.068         | 14.608        | 29.889      | 64.498      | 89.893      | 173.493       |
| 11.483                             |                                     |               | 2.922         | 5.169         | 11.911        | 24.046      | 49.891      | 87.196      | 173.493       |
| 13.123                             |                                     |               | 2.697         | 4.495         | 10.113        | 20.226      | 40.677      | 73.487      | 142.930       |
| 14.764                             |                                     |               | 2.247         | 3.820         | 8.765         | 17.529      | 34.609      | 61.801      | 117.535       |
| 16.404                             |                                     |               |               | 3.596         | 7.866         | 15.057      | 30.114      | 53.262      | 99.107        |
| 18.045                             |                                     |               |               | 3.146         | 7.191         | 12.360      | 26.743      | 46.744      | 85.623        |
| 19.685                             |                                     |               |               | 2.697         | 6.068         | 10.113      | 24.271      | 42.025      | 75.510        |
| <b>S3 (in.) max</b>                | 1.969                               | 1.969         | 1.969         | 2.953         | 3.937         | 3.937       | 3.937       | 4.921       | 4.921         |
| Minimum assy lengths               |                                     |               |               |               |               |             |             |             |               |
| <b>S2 (in.) min</b>                | 11.65                               | 13.78         | 15.51         | 17.87         | 21.34         | 24.17       | 28.58       | 32.28       |               |

The data supplied is appropriate for inclusion in the relevant design calculations

## Partial factors

The allowable loads refer to the minimum design resistance in KN, calculated using the UK National Annex, material and Load Factors.


| Partial factors for design of building members/sections EN1993-1-1   |     |      |      |     |     |     |         |     |
|----------------------------------------------------------------------|-----|------|------|-----|-----|-----|---------|-----|
| YM0                                                                  | YM1 | YM2  | YM3  | YM4 | YM5 | YM6 | YM7     |     |
| 1                                                                    | 1   | 1.1  | 1.25 | 1.1 | 1   | 1   | 1       |     |
| Partial factors for design of building connections/joints EN1993-1-8 |     |      |      |     |     |     |         |     |
| YM0                                                                  | YM1 | YM2  | YM3  | YM4 | YM5 | YM6 | YM6,ser | YM7 |
| 1                                                                    | 1   | 1.25 | 1.25 | 1.1 | 1   | 1   | 1       | 1.1 |

# STRUCTURAL ROD SYSTEM SPECIFICATIONS



## ARS6 - Carbon Steel Compression Struts

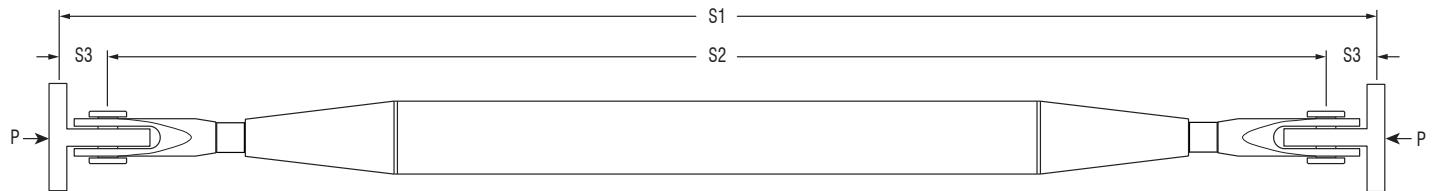
### ARS6 - Systems



#### Carbon Steel – Carbon steel tubes: BS EN10210-1 Grade S355JR

METRIC

| Fork/Bar Sizes                   | M12                                | M16    | M20    | M24    | M30    | M36    | M42       | M48      | M56      | M64      | M76      | M90    | M100     |
|----------------------------------|------------------------------------|--------|--------|--------|--------|--------|-----------|----------|----------|----------|----------|--------|----------|
| <b>CHS Size</b><br>(Dia. x t mm) | 33.7x4                             | 42.4x4 | 48.3x5 | 60.3x5 | 76.1x5 | 88.9x5 | 114.3x6.3 | 139.7x10 | 168.3x10 | 193.7x10 | 244.5x16 | 273x16 | 323.9x16 |
| <b>S1 (m)</b>                    |                                    |        |        |        |        |        |           |          |          |          |          |        |          |
|                                  | <b>P — Design Resistance in kN</b> |        |        |        |        |        |           |          |          |          |          |        |          |
| 1.5                              | 8                                  | 25     | 45     | 74     | 127    | 216    | 306       | 426      | 600      | 837      | 1207     | 1807   | 2376     |
| 2                                |                                    | 17     | 29     | 56     | 127    | 216    | 306       | 426      | 600      | 837      | 1207     | 1807   | 2376     |
| 2.5                              |                                    | 13     | 22     | 40     | 98     | 202    | 306       | 426      | 600      | 837      | 1207     | 1807   | 2376     |
| 3                                |                                    | 10     | 18     | 31     | 74     | 153    | 306       | 426      | 600      | 837      | 1207     | 1807   | 2376     |
| 3.5                              |                                    | 15     | 26     | 60     | 122    | 244    | 426       | 600      | 837      | 1207     | 1807     | 2376   |          |
| 4                                |                                    | 13     | 22     | 51     | 102    | 199    | 359       | 600      | 837      | 1207     | 1807     | 2376   |          |
| 4.5                              |                                    | 12     | 20     | 44     | 88     | 168    | 300       | 560      | 837      | 1207     | 1807     | 2376   |          |
| 5                                |                                    | 10     | 17     | 39     | 78     | 146    | 258       | 480      | 781      | 1207     | 1807     | 2376   |          |
| 5.5                              |                                    | 16     | 35     | 66     | 129    | 226    | 416       | 683      | 1207     | 1807     | 2376     |        |          |
| 6                                |                                    | 14     | 32     | 55     | 116    | 201    | 367       | 600      | 1194     | 1807     | 2376     |        |          |
| 6.5                              |                                    | 13     | 29     | 47     | 106    | 182    | 328       | 532      | 1074     | 1783     | 2376     |        |          |
| 7                                |                                    | 11     | 24     | 40     | 97     | 166    | 297       | 478      | 965      | 1624     | 2376     |        |          |
| 7.5                              |                                    | 10     | 21     | 35     | 90     | 154    | 272       | 434      | 872      | 1475     | 2376     |        |          |
| 8                                |                                    |        | 18     | 30     | 82     | 143    | 251       | 398      | 793      | 1342     | 2226     |        |          |
| 8.5                              |                                    |        | 16     | 27     | 72     | 133    | 233       | 368      | 727      | 1226     | 2062     |        |          |
| 9                                |                                    |        | 14     | 23     | 64     | 125    | 218       | 342      | 670      | 1126     | 1908     |        |          |
| 9.5                              |                                    |        | 12     | 21     | 57     | 118    | 205       | 320      | 623      | 1041     | 1767     |        |          |
| 10                               |                                    |        | 11     | 18     | 51     | 112    | 194       | 301      | 582      | 968      | 1640     |        |          |
| 11                               |                                    |        |        | 9      | 15     | 41     | 101       | 175      | 270      | 515      | 849      | 1429   |          |
| 12                               |                                    |        |        |        | 12     | 34     | 93        | 159      | 245      | 464      | 759      | 1265   |          |
| <b>S3 (mm) max</b>               | 50                                 | 50     | 50     | 75     | 100    | 100    | 100       | 125      | 125      | 175      | 200      | 225    | 250      |
| Minimum assy lengths             |                                    |        |        |        |        |        |           |          |          |          |          |        |          |
| <b>S2 (mm) min</b>               | 296                                | 350    | 394    | 454    | 542    | 614    | 726       | 820      | 952      | 1060     | 1302     | 1474   | 1704     |


The data supplied is appropriate for inclusion in the relevant design calculations

### Partial factors

The allowable loads refer to the minimum design resistance in KN, calculated using the UK National Annex, material and Load Factors.

| Partial factors for design of building members/sections EN1993-1-1   |     |      |      |     |     |     |         |
|----------------------------------------------------------------------|-----|------|------|-----|-----|-----|---------|
| YM0                                                                  | YM1 | YM2  | YM3  | YM4 | YM5 | YM6 | YM7     |
| 1                                                                    | 1   | 1.1  | 1.25 | 1.1 | 1   | 1   | 1       |
| Partial factors for design of building connections/joints EN1993-1-8 |     |      |      |     |     |     |         |
| YM0                                                                  | YM1 | YM2  | YM3  | YM4 | YM5 | YM6 | YM7,ser |
| 1                                                                    | 1   | 1.25 | 1.25 | 1.1 | 1   | 1   | 1.1     |

## ARS6 - Systems



## Carbon Steel – Carbon steel tubes: BS EN10210-1 Grade S355JR

IMPERIAL

| Fork/Bar Sizes                     | M12                                 | M16           | M20           | M24           | M30           | M36         | M42         | M48         | M56           | M64           | M76          | M90           | M100          |         |
|------------------------------------|-------------------------------------|---------------|---------------|---------------|---------------|-------------|-------------|-------------|---------------|---------------|--------------|---------------|---------------|---------|
| <b>CHS Size</b><br>(Dia. x wt in.) | 1.327 x 0.157                       | 1.661 x 0.157 | 1.902 x 0.197 | 2.374 x 0.197 | 2.996 x 0.197 | 3.5 x 0.197 | 4.5 x 0.248 | 5.5 x 0.394 | 6.626 x 0.394 | 7.626 x 0.394 | 9.626 x 0.63 | 10.748 x 0.63 | 12.752 x 0.63 |         |
| <b>S1 (ft)</b>                     |                                     |               |               |               |               |             |             |             |               |               |              |               |               |         |
|                                    | <b>P — Design Resistance in kip</b> |               |               |               |               |             |             |             |               |               |              |               |               |         |
| 4.921                              | 1.798                               | 5.618         | 10.113        | 16.630        | 28.541        | 48.542      | 68.768      | 95.736      | 134.839       | 188.101       | 271.252      | 406.091       | 533.963       |         |
| 6.562                              |                                     | 3.820         | 6.517         | 12.585        | 28.541        | 48.542      | 68.768      | 95.736      | 134.839       | 188.101       | 271.252      | 406.091       | 533.963       |         |
| 8.202                              |                                     | 2.922         | 4.944         | 8.989         | 22.024        | 45.396      | 68.768      | 95.736      | 134.839       | 188.101       | 271.252      | 406.091       | 533.963       |         |
| 9.843                              |                                     | 2.247         | 4.045         | 6.967         | 16.630        | 34.384      | 68.768      | 95.736      | 134.839       | 188.101       | 271.252      | 406.091       | 533.963       |         |
| 11.483                             |                                     |               | 3.371         | 5.843         | 13.484        | 27.417      | 54.835      | 95.736      | 134.839       | 188.101       | 271.252      | 406.091       | 533.963       |         |
| 13.123                             |                                     |               | 2.922         | 4.944         | 11.461        | 22.923      | 44.722      | 80.679      | 134.839       | 188.101       | 271.252      | 406.091       | 533.963       |         |
| 14.764                             |                                     |               | 2.697         | 4.495         | 9.888         | 19.776      | 37.755      | 67.420      | 125.850       | 188.101       | 271.252      | 406.091       | 533.963       |         |
| 16.404                             |                                     |               | 2.247         | 3.820         | 8.765         | 17.529      | 32.811      | 57.981      | 107.871       | 175.516       | 271.252      | 406.091       | 533.963       |         |
| 18.045                             |                                     |               |               | 3.596         | 7.866         | 14.832      | 28.990      | 50.789      | 93.489        | 153.492       | 271.252      | 406.091       | 533.963       |         |
| 19.685                             |                                     |               |               | 3.146         | 7.191         | 12.360      | 26.069      | 45.171      | 82.477        | 134.839       | 268.330      | 406.091       | 533.963       |         |
| 21.325                             |                                     |               |               | 2.922         | 6.517         | 10.562      | 23.822      | 40.901      | 73.712        | 119.557       | 241.362      | 400.697       | 533.963       |         |
| 22.966                             |                                     |               |               | 2.472         | 5.394         | 8.989       | 21.799      | 37.306      | 66.745        | 107.422       | 216.866      | 364.965       | 533.963       |         |
| 24.606                             |                                     |               |               | 2.247         | 4.719         | 7.866       | 20.226      | 34.609      | 61.127        | 97.534        | 195.966      | 331.480       | 533.963       |         |
| 26.247                             |                                     |               |               |               | 4.045         | 6.742       | 18.428      | 32.137      | 56.408        | 89.443        | 178.213      | 301.590       | 500.254       |         |
| 27.887                             |                                     |               |               |               | 3.596         | 6.068       | 16.181      | 29.889      | 52.363        | 82.701        | 163.380      | 275.522       | 463.398       |         |
| 29.528                             |                                     |               |               |               | 3.146         | 5.169       | 14.383      | 28.092      | 48.992        | 76.858        | 150.571      | 253.048       | 428.789       |         |
| 31.168                             |                                     |               |               |               | 2.697         | 4.719       | 12.810      | 26.518      | 46.070        | 71.914        | 140.008      | 233.946       | 397.102       |         |
| 32.808                             |                                     |               |               |               | 2.472         | 4.045       | 11.461      | 25.170      | 43.598        | 67.644        | 130.794      | 217.541       | 368.561       |         |
| 36.089                             |                                     |               |               |               |               | 2.023       | 3.371       | 9.214       | 22.698        | 39.328        | 60.678       | 115.737       | 190.798       | 321.142 |
| 39.370                             |                                     |               |               |               |               |             | 2.697       | 7.641       | 20.900        | 35.732        | 55.059       | 104.276       | 170.572       | 284.286 |
| <b>S3 (in.) max</b>                | 1.969                               | 1.969         | 1.969         | 2.953         | 3.937         | 3.937       | 3.937       | 4.921       | 4.921         | 6.890         | 7.874        | 8.858         | 9.843         |         |

Minimum assy lengths

| S2 (in.) min | 11.65 | 13.78 | 15.51 | 17.87 | 21.34 | 24.17 | 28.58 | 32.28 | 37.48 | 41.73 | 51.26 | 58.03 | 67.09 |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|

The data supplied is appropriate for inclusion in the relevant design calculations

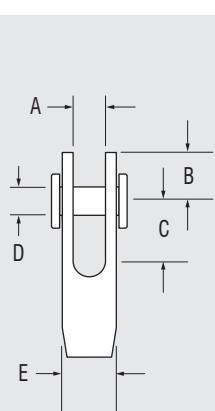
## Partial factors

The allowable loads refer to the minimum design resistance in KN, calculated using the UK National Annex, material and Load Factors.

| Partial factors for design of building members/sections EN1993-1-1   |     |      |      |     |     |     |         |
|----------------------------------------------------------------------|-----|------|------|-----|-----|-----|---------|
| YM0                                                                  | YM1 | YM2  | YM3  | YM4 | YM5 | YM6 | YM7     |
| 1                                                                    | 1   | 1.1  | 1.25 | 1.1 | 1   | 1   | 1       |
| Partial factors for design of building connections/joints EN1993-1-8 |     |      |      |     |     |     |         |
| YM0                                                                  | YM1 | YM2  | YM3  | YM4 | YM5 | YM6 | YM6,ser |
| 1                                                                    | 1   | 1.25 | 1.25 | 1.1 | 1   | 1   | 1       |

# STRUCTURAL ROD SYSTEM SPECIFICATIONS

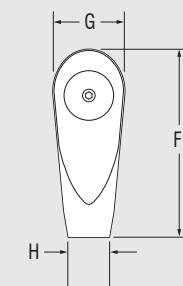
## CS 355 ARS6 - Carbon Steel Compression Struts


### ARS6 - Component Dimensions

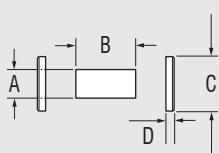
Fork Ends - Internal RH or LH Threads. Including Lock Covers.

| THREAD<br>TYPE | A  | B   | C   | D   | E   | F   | G   | H   |
|----------------|----|-----|-----|-----|-----|-----|-----|-----|
|                | mm | mm  | mm  | mm  | mm  | mm  | mm  | mm  |
| M12            | 14 | 21  | 25  | 13  | 24  | 90  | 32  | 18  |
| M16            | 16 | 27  | 30  | 17  | 28  | 112 | 43  | 22  |
| M20            | 19 | 33  | 42  | 21  | 35  | 132 | 51  | 29  |
| M24            | 24 | 41  | 50  | 25  | 42  | 155 | 62  | 35  |
| M30            | 30 | 52  | 59  | 31  | 52  | 189 | 79  | 43  |
| M36            | 36 | 61  | 70  | 37  | 64  | 217 | 93  | 52  |
| M42            | 39 | 69  | 78  | 43  | 74  | 243 | 107 | 60  |
| M48            | 44 | 78  | 87  | 50  | 84  | 266 | 121 | 68  |
| M56            | 49 | 96  | 105 | 58  | 95  | 313 | 145 | 80  |
| M64            | 59 | 110 | 120 | 66  | 120 | 348 | 167 | 91  |
| M76            | 76 | 131 | 141 | 78  | 148 | 420 | 199 | 108 |
| M90            | 86 | 161 | 171 | 96  | 170 | 498 | 246 | 129 |
| M100           | 91 | 188 | 198 | 111 | 181 | 575 | 287 | 143 |

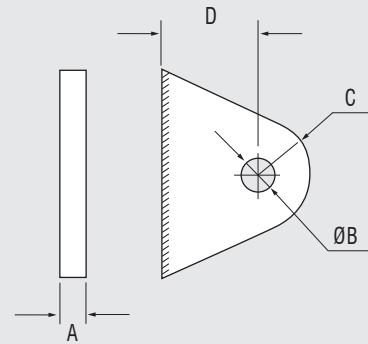
Materials: Carbon steel M12 to M100, Stainless steel M12 to M64


METRIC




IMPERIAL

| THREAD<br>TYPE | A    | B    | C    | D    | E    | F     | G     | H    |
|----------------|------|------|------|------|------|-------|-------|------|
|                | in.  | in.  | in.  | in.  | in.  | in.   | in.   | in.  |
| M12            | 0.55 | 0.83 | 0.99 | 0.51 | 0.95 | 3.55  | 1.26  | 0.71 |
| M16            | 0.63 | 1.06 | 1.18 | 0.67 | 1.10 | 4.41  | 1.69  | 0.87 |
| M20            | 0.75 | 1.30 | 1.65 | 0.83 | 1.38 | 5.20  | 2.01  | 1.14 |
| M24            | 0.95 | 1.62 | 1.97 | 0.99 | 1.65 | 6.11  | 2.44  | 1.38 |
| M30            | 1.18 | 2.05 | 2.32 | 1.22 | 2.05 | 7.45  | 3.11  | 1.69 |
| M36            | 1.42 | 2.40 | 2.76 | 1.46 | 2.52 | 8.55  | 3.66  | 2.05 |
| M42            | 1.54 | 2.72 | 3.07 | 1.69 | 2.92 | 9.57  | 4.22  | 2.36 |
| M48            | 1.73 | 3.07 | 3.43 | 1.97 | 3.31 | 10.48 | 4.77  | 2.68 |
| M56            | 1.93 | 3.78 | 4.14 | 2.29 | 3.74 | 12.33 | 5.71  | 3.15 |
| M64            | 2.32 | 4.33 | 4.73 | 2.60 | 4.73 | 13.71 | 6.58  | 3.59 |
| M76            | 2.99 | 5.16 | 5.56 | 3.07 | 5.83 | 16.55 | 7.84  | 4.26 |
| M90            | 3.39 | 6.34 | 6.74 | 3.78 | 6.70 | 19.62 | 9.69  | 5.08 |
| M100           | 3.59 | 7.41 | 7.80 | 4.37 | 7.13 | 22.66 | 11.31 | 5.63 |


Materials: Carbon steel M12 to M100, Stainless steel M12 to M64



## Standard Pinsets and Connection Plates – Carbon Steel or Stainless Steel



Standard Pinsets



\*Not to scale

Connection Plate

## Standard Pinsets

|      | METRIC  |         |         |         |
|------|---------|---------|---------|---------|
|      | A<br>mm | B<br>mm | C<br>mm | D<br>mm |
| M12  | 12      | 24      | 20      | 3       |
| M16  | 16      | 28      | 25      | 5       |
| M20  | 20      | 36      | 32      | 6       |
| M24  | 24      | 43      | 35      | 6       |
| M30  | 30      | 53      | 50      | 10      |
| M36  | 36      | 65      | 55      | 10      |
| M42  | 42      | 75      | 60      | 12      |
| M48  | 48      | 86      | 60      | 12      |
| M56  | 56      | 96      | 70      | 12      |
| M64  | 64      | 121     | 86      | 14      |
| M76  | 76      | 153     | 100     | 15      |
| M90  | 94      | 173     | 120     | 20      |
| M100 | 109     | 183     | 140     | 20      |

(Material - carbon steel raw or galvanized or stainless steel). Custom pin sets are available on request.

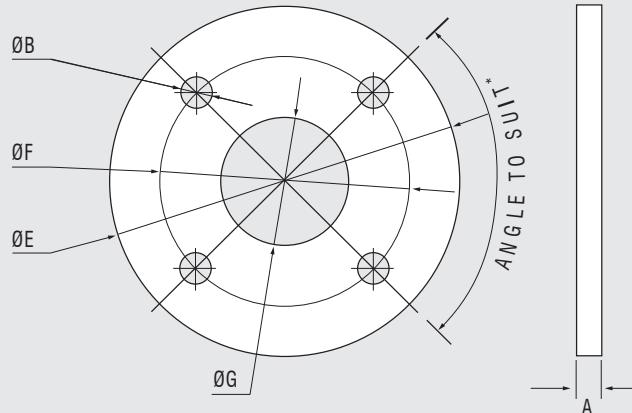
## Standard Pinsets

|      | IMPERIAL |          |          |          |
|------|----------|----------|----------|----------|
|      | A<br>in. | B<br>in. | C<br>in. | D<br>in. |
| M12  | 0.47     | 0.95     | 0.79     | 0.12     |
| M16  | 0.63     | 1.10     | 0.99     | 0.20     |
| M20  | 0.79     | 1.42     | 1.26     | 0.24     |
| M24  | 0.95     | 1.69     | 1.38     | 0.24     |
| M30  | 1.18     | 2.09     | 1.97     | 0.39     |
| M36  | 1.42     | 2.56     | 2.17     | 0.39     |
| M42  | 1.65     | 2.96     | 2.36     | 0.47     |
| M48  | 1.89     | 3.39     | 2.36     | 0.47     |
| M56  | 2.21     | 3.78     | 2.76     | 0.47     |
| M64  | 2.52     | 4.77     | 3.39     | 0.55     |
| M76  | 2.99     | 6.03     | 3.94     | 0.59     |
| M90  | 3.70     | 6.82     | 4.73     | 0.79     |
| M100 | 4.29     | 7.21     | 5.52     | 0.79     |

## Connection Plates

| MATCHING<br>ROD SIZE<br>THREAD | METRIC  |         |         |         |                |
|--------------------------------|---------|---------|---------|---------|----------------|
|                                | A<br>mm | B<br>mm | C<br>mm | D<br>mm | Plate<br>Grade |
| M12                            | 10      | 13      | 21      | 32      | S355           |
| M16                            | 12      | 17      | 27      | 38      | S355           |
| M20                            | 15      | 21      | 33      | 52      | S355           |
| M24                            | 20      | 25      | 41      | 62      | S355           |
| M30                            | 25      | 31      | 52      | 74      | S355           |
| M36                            | 30      | 37      | 61      | 87      | S355           |
| M42                            | 35      | 43      | 69      | 97      | S355           |
| M48                            | 40      | 49      | 78      | 107     | S355           |
| M56                            | 45      | 57      | 96      | 125     | S355           |
| M64                            | 55      | 65      | 110     | 140     | S355           |
| M76                            | 70      | 78      | 131     | 161     | S355           |
| M90                            | 80      | 96      | 161     | 196     | S355           |
| M100                           | 85      | 111     | 188     | 222     | S355           |

## Connection Plate


| MATCHING<br>ROD SIZE<br>THREAD | IMPERIAL |          |          |          |                |
|--------------------------------|----------|----------|----------|----------|----------------|
|                                | A<br>in. | B<br>in. | C<br>in. | D<br>in. | Plate<br>Grade |
| M12                            | 0.39     | 0.51     | 0.83     | 1.26     | S355           |
| M16                            | 0.47     | 0.67     | 1.06     | 1.50     | S355           |
| M20                            | 0.59     | 0.83     | 1.30     | 2.05     | S355           |
| M24                            | 0.79     | 0.99     | 1.62     | 2.44     | S355           |
| M30                            | 0.99     | 1.22     | 2.05     | 2.92     | S355           |
| M36                            | 1.18     | 1.46     | 2.40     | 3.43     | S355           |
| M42                            | 1.38     | 1.69     | 2.72     | 3.82     | S355           |
| M48                            | 1.58     | 1.93     | 3.07     | 4.22     | S355           |
| M56                            | 1.77     | 2.25     | 3.78     | 4.93     | S355           |
| M64                            | 2.17     | 2.56     | 4.33     | 5.52     | S355           |
| M76                            | 2.76     | 3.07     | 5.16     | 6.34     | S355           |
| M90                            | 3.15     | 3.78     | 6.34     | 7.72     | S355           |
| M100                           | 3.35     | 4.37     | 7.41     | 8.75     | S355           |

All structural plate Grades to BS EN 10025 (Carbon steel) or BS EN 10088 (Stainless steel). Custom connection plates are available on request.

# CENTRE DISC PLATE SYSTEMS

## JOINING SYSTEMS & CUSTOM COMPONENTS

### Centre Discs - Carbon Steel or Stainless Steel

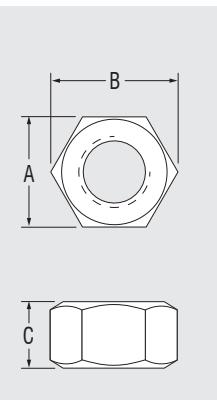


Centre Disk

\*Not to scale

| MATCHING ROD<br>SIZE<br>THREAD | METRIC  |         |         |         |         |         |                       |
|--------------------------------|---------|---------|---------|---------|---------|---------|-----------------------|
|                                | A<br>mm | B<br>mm | C<br>mm | D<br>mm | E<br>mm | F<br>mm | (Optional)<br>G<br>mm |
| M12                            | 10      | 13.0    | 21.0    | 32      | 145     | 110     | 50                    |
| M16                            | 12      | 17.0    | 27.0    | 38      | 185     | 140     | 60                    |
| M20                            | 15      | 21.0    | 33.0    | 52      | 245     | 180     | 70                    |
| M24                            | 20      | 25.0    | 41.0    | 62      | 285     | 210     | 90                    |
| M30                            | 25      | 31.0    | 52.0    | 74      | 350     | 260     | 100                   |
| M36                            | 30      | 37.0    | 61.0    | 87      | 420     | 310     | 120                   |
| M42                            | 35      | 43.0    | 69.0    | 97      | 490     | 360     | 140                   |
| M48                            | 40      | 49.0    | 78.0    | 107     | 560     | 410     | 160                   |
| M56                            | 45      | 57.0    | 96.0    | 125     | 660     | 480     | 200                   |

| IMPERIAL |       |       |       |       |        |        |       |
|----------|-------|-------|-------|-------|--------|--------|-------|
| TYPE     | in.   | in.   | in.   | in.   | in.    | in.    | in.   |
| M12      | 0.394 | 0.512 | 0.827 | 1.260 | 5.709  | 4.331  | 1.969 |
| M16      | 0.472 | 0.669 | 1.063 | 1.496 | 7.283  | 5.512  | 2.362 |
| M20      | 0.591 | 0.827 | 1.299 | 2.047 | 9.646  | 7.087  | 2.756 |
| M24      | 0.787 | 0.984 | 1.614 | 2.441 | 11.220 | 8.268  | 3.543 |
| M30      | 0.984 | 1.220 | 2.047 | 2.913 | 13.780 | 10.236 | 3.937 |
| M36      | 1.181 | 1.457 | 2.402 | 3.425 | 16.535 | 12.205 | 4.724 |
| M42      | 1.378 | 1.693 | 2.717 | 3.819 | 19.291 | 14.173 | 5.512 |
| M48      | 1.575 | 1.929 | 3.071 | 4.213 | 22.047 | 16.142 | 6.299 |
| M56      | 1.772 | 2.244 | 3.780 | 4.921 | 25.984 | 18.898 | 7.874 |

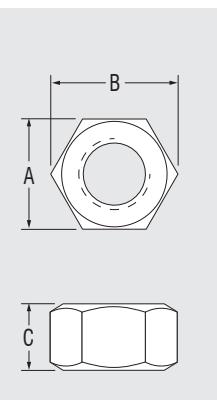

Note:

- Centre disk designs are based on grade S355J2G3 plate to BS EN 10025 for carbon steel or BS EN 10088 for Stainless Steel.
- Local plate equivalents may be used, but must match associated ARS rod or compression strut system mechanical properties. See pages 6-7.
- Ensure adequate clearances for for paint or galvanising thickness to match fork ends.
- Suits ARS2, ARS4 and ARS6 systems. ARS1 and ARS3 systems upon request.

## SS Hex Nuts - Stainless Steel. 316 to ANSI B18.6.3.

METRIC

| PRODUCT No. | THREAD TYPE     | THREADS PER INCH | A mm | B mm | C mm | WEIGHT g |
|-------------|-----------------|------------------|------|------|------|----------|
| NS-03       | #10 (3/16" UNF) | 32               | 9.5  | 10.7 | 3.1  | 1        |
| NS-04       | 1/4" UNF        | 28               | 11.0 | 12.5 | 5.6  | 2        |
| NS-05       | 5/16" UNF       | 24               | 12.5 | 14.3 | 6.8  | 4        |
| NS-06       | 3/8" UNF        | 24               | 14.1 | 16.2 | 8.3  | 6        |
| NS-08       | 1/2" UNF        | 20               | 18.8 | 21.5 | 11.0 | 12       |
| NS-10       | 5/8" UNF        | 18               | 23.6 | 27.0 | 13.9 | 32       |
| NS-12       | 3/4" UNF        | 16               | 27.8 | 32.0 | 16.3 | 50       |
| NS-14       | 7/8" UNF        | 14               | 32.6 | 37.4 | 19.0 | 82       |
| NS-16       | 1" UNF          | 12               | 37.4 | 42.8 | 21.8 | 126      |
| NS-20       | 1 1/4" UNF      | 12               | 47.5 | 54.5 | 28.0 | 265      |
| NS-22       | 1 3/8" UNF      | 12               | 57.0 | 65.0 | 30.5 | 450      |

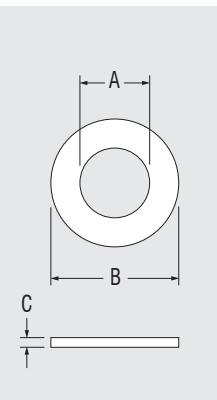



Metric thread nuts are available on request.

## Hex Nuts - Chrome Plated Brass. To ANSI B18.6.3.

METRIC

| PRODUCT No. | THREAD TYPE     | THREADS PER INCH | A mm | B mm | C mm | WEIGHT g |
|-------------|-----------------|------------------|------|------|------|----------|
| NB-03*      | #10 (3/16" UNF) | 32               | 7.9  | 8.9  | 3.2  | 2        |
| NB-04*      | 1/4" UNF        | 28               | 11.1 | 12.7 | 5.5  | 4        |
| NB-05*      | 5/16" UNF       | 24               | 12.7 | 14.4 | 6.7  | 6        |
| NB-06*      | 3/8" UNF        | 24               | 14.3 | 16.3 | 8.5  | 8        |
| NB-08       | 1/2" UNF        | 20               | 19.0 | 21.6 | 11.0 | 18       |
| NB-10       | 5/8" UNF        | 18               | 23.7 | 27.2 | 13.8 | 34       |
| NB-12       | 3/4" UNF        | 16               | 28.3 | 32.3 | 15.8 | 56       |
| NB-14       | 7/8" UNF        | 14               | 33.2 | 37.9 | 18.9 | 94       |
| NB-16       | 1" UNF          | 12               | 37.8 | 43.2 | 22.0 | 142      |
| NB-20       | 1 1/4" UNF      | 12               | 47.5 | 54.2 | 27.8 | 276      |
| NB-22       | 1 3/8" UNF      | 12               | 57.0 | 65.1 | 30.5 | 478      |




\*Nickel Plated. Metric thread nuts are available on request.

## SS Flat Washers - Stainless Steel 316.

METRIC

| PRODUCT No. | A mm | B mm | C mm | WEIGHT g |
|-------------|------|------|------|----------|
| WS-03       | 4.8  | 11.1 | 0.9  | 1        |
| WS-04       | 6.4  | 14.3 | 1.2  | 1        |
| WS-05       | 8.0  | 16.0 | 1.2  | 1        |
| WS-06       | 9.5  | 19.0 | 1.2  | 2        |
| WS-08       | 12.7 | 25.4 | 2.0  | 5        |
| WS-10       | 16.0 | 38.0 | 2.0  | 13       |
| WS-12       | 19.0 | 38.0 | 2.0  | 12       |
| WS-14       | 22.2 | 50.8 | 3.0  | 23       |
| WS-16       | 25.4 | 47.6 | 2.0  | 18       |
| WS-20       | 31.8 | 70.0 | 3.0  | 64       |
| WS-22       | 36.0 | 66.0 | 5.0  | 82       |

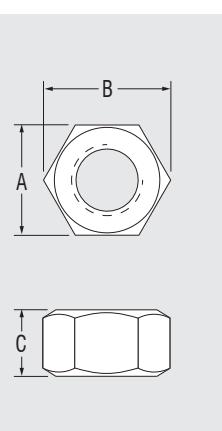



# COMPONENTS SPECIFICATIONS

## SS Nuts, Washers

### SS Hex Nuts - Stainless Steel. 316 to ANSI B18.6.3.

#### IMPERIAL

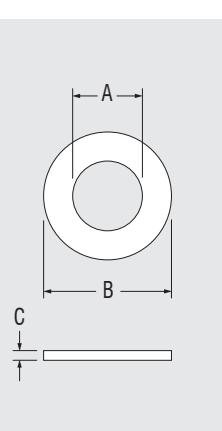

| PRODUCT No. | THREAD TYPE     | TPI | A in. | B in. | C in. | WEIGHT oz |
|-------------|-----------------|-----|-------|-------|-------|-----------|
| NS-03       | #10 (3/16" UNF) | 32  | 0.374 | 0.421 | 0.122 | 0.1       |
| NS-04       | 1/4" UNF        | 28  | 0.433 | 0.492 | 0.220 | 0.1       |
| NS-05       | 5/16" UNF       | 24  | 0.492 | 0.563 | 0.268 | 0.1       |
| NS-06       | 3/8" UNF        | 24  | 0.555 | 0.638 | 0.327 | 0.2       |
| NS-08       | 1/2" UNF        | 20  | 0.740 | 0.846 | 0.433 | 0.4       |
| NS-10       | 5/8" UNF        | 18  | 0.929 | 1.063 | 0.547 | 1.1       |
| NS-12       | 3/4" UNF        | 16  | 1.094 | 1.260 | 0.642 | 1.8       |
| NS-14       | 7/8" UNF        | 14  | 1.283 | 1.472 | 0.748 | 2.9       |
| NS-16       | 1" UNF          | 12  | 1.472 | 1.685 | 0.858 | 4.4       |
| NS-20       | 1 1/4" UNF      | 12  | 1.870 | 2.146 | 1.102 | 9.3       |
| NS-22       | 1 3/8" UNF      | 12  | 2.244 | 2.559 | 1.201 | 15.9      |



### Hex Nuts - Chrome Plated Brass. To ANSI B18.6.3.

#### IMPERIAL

| PRODUCT No. | THREAD TYPE     | TPI | A in. | B in. | C in. | WEIGHT oz |
|-------------|-----------------|-----|-------|-------|-------|-----------|
| NB-03*      | #10 (3/16" UNF) | 32  | 0.311 | 0.350 | 0.126 | 0.1       |
| NB-04*      | 1/4" UNF        | 28  | 0.437 | 0.500 | 0.217 | 0.1       |
| NB-05*      | 5/16" UNF       | 24  | 0.500 | 0.567 | 0.264 | 0.2       |
| NB-06*      | 3/8" UNF        | 24  | 0.563 | 0.642 | 0.335 | 0.3       |
| NB-08       | 1/2" UNF        | 20  | 0.748 | 0.850 | 0.433 | 0.6       |
| NB-10       | 5/8" UNF        | 18  | 0.933 | 1.071 | 0.543 | 1.2       |
| NB-12       | 3/4" UNF        | 16  | 1.114 | 1.272 | 0.622 | 2.0       |
| NB-14       | 7/8" UNF        | 14  | 1.307 | 1.492 | 0.744 | 3.3       |
| NB-16       | 1" UNF          | 12  | 1.488 | 1.701 | 0.866 | 5.0       |
| NB-20       | 1 1/4" UNF      | 12  | 1.870 | 2.134 | 1.094 | 9.7       |
| NB-22       | 1 3/8" UNF      | 12  | 2.244 | 2.563 | 1.201 | 16.9      |




\*Nickel plated

### SS Flat Washers - Stainless Steel 316.

#### IMPERIAL

| PRODUCT No. | A in. | B in. | C in. | WEIGHT oz |
|-------------|-------|-------|-------|-----------|
| WS-03       | 0.189 | 0.437 | 0.035 | 0.1       |
| WS-04       | 0.252 | 0.563 | 0.047 | 0.1       |
| WS-05       | 0.315 | 0.630 | 0.047 | 0.1       |
| WS-06       | 0.374 | 0.748 | 0.047 | 0.1       |
| WS-08       | 0.500 | 1.000 | 0.079 | 0.2       |
| WS-10       | 0.630 | 1.496 | 0.079 | 0.5       |
| WS-12       | 0.748 | 1.496 | 0.079 | 0.4       |
| WS-14       | 0.874 | 2.000 | 0.118 | 0.8       |
| WS-16       | 1.000 | 1.874 | 0.079 | 0.6       |
| WS-20       | 1.252 | 2.756 | 0.118 | 2.3       |
| WS-22       | 1.417 | 2.598 | 0.197 | 2.9       |



## Stainless Steel Considerations

Stainless steel generally has good natural corrosion resistance in common uses but can still suffer degradation and discoloration if subject to certain environmental, physical conditions or lack of suitable maintenance schedule and servicing. In general, clean and smooth surfaces are preferred to rough finishes to encourage a protective oxide layer to be maintained and enable stainless steel to remain bright. Specifying the cleaning & maintenance of stainless steel surfaces by regular washing to avoid staining and dirt marks is highly recommended, especially when used in more severe environments. Natural rain can often be sufficient to remove basic contaminants but more frequent scheduled cleaning may be required when products are used in inner urban and more aggressive environments. Technical advice on appropriate cleaning techniques for specific situations is available from specialist cleaning firms. Stainless steel representative associations are another good contact to consult for the most up to date advice. Information on material grades, selection, specification, end usage and other topics is also available from these organizations.

## Stainless Steel Specialist Websites of Interest

Australian Stainless steel development association  
British stainless steel association

[www.assda.asu.au](http://www.assda.asu.au)  
[www.bssa.org.uk](http://www.bssa.org.uk)

Specialty steel industry of North America  
European stainless steel development association

[www.ssina.com](http://www.ssina.com)  
[www.euro-inox.org](http://www.euro-inox.org)

## Care & Use of Threaded Products

Ronstan produces and supplies many threaded items. All are made to the relevant thread standard, gauging processes and supplied under ISO9001 quality assurance system.

Stainless steel is a material which when used in male / female threaded elements and loaded with an applied torque can "Gall" or "cold weld". This occurs when the stainless steel oxide surface film breaks down as a result of direct metal to metal contact. Solid-phase welding takes place (whereby material is transferred from one surface to another via contact pick-up). The symptoms of galling include thread surface damage and permanent seizure of the thread. Galling can be minimized with the use of dissimilar metals. Ronstan generally supplies SS threaded items pre-assembled to ensure thread performance. Other Ronstan products uses brass alloys on turnbuckle ranges and use of brass nuts for the load carrying nuts as used in cable systems.

If using stainless steel male / female threaded systems, use of high pressure lubrication compound is required to help reduce the possibility of thread seizure. Care using these lubricated products is required to ensure threads stay clean during installation / service. Suitable clean up of lubricants after installation is required to avoid staining and grime build up.

Protection of threads during transport & in preparation for installation must be done to avoid any thread damage. Keeping threads wrapped until final installation is recommended. Threads must be clean of burrs, dirt, coarse grime or sand to help reduce the possibility of thread seizure and ensure the correct functionality of the product. Use of a secondary tensioning system for pre-stressing tension members on-site may be required to achieve the desired tension forces and avoid thread or product damage.

*Contact your local Ronstan representative for any further assistance on these topics.*

## Quality Assurance

Ronstan holds full accreditation to ISO9001. Ronstan is committed to the design, manufacture, supply and installation of high, quality cable, rod and tensile architectural projects worldwide.



## Environment and Sustainability

Ronstan is committed to reducing its impact on the environment through staff awareness and education, the use of responsible metal, paper, plastic and chemical recycling practices, water catchment-recycling for use within production processes, the use of energy efficient technologies which create advantages for the business and the environment. These initiatives are undertaken in conjunction with on-going government environmental programmes and other like-minded "Green" manufacturering and supply partners.

## CUSTOMER CONSIDERATIONS

### Factor of Safety

An appropriate factor of safety(>2) should be applied to Breaking Load (B.L.) figures to suit each application before choosing or specifying a particular product. For many industrial and safety related applications, a factor of safety should be used or may be required by law or other regulations. It is the customer's responsibility to ensure that an appropriate factor of safety is used, and it should allow for safety implications, service life, fatigue (as may be caused by wind stresses or repetitive cyclical loading), type of load, exposure to ultraviolet light, corrosion and stress corrosion (such as in high humidity or chlorine environments). Note that a 'safe working load' is not specified as this is dependent on the factor of safety, which must be determined by the user relative to each application.

### Useful Life

The useful life of any product is determined by the above factors and must be assessed in each application, and thus no guarantee can be provided for product life, load capacity or any other factor due to the variability in usage. In some jurisdictions government regulations require the replacement of rigging components within certain periods of time, usually every three to five years. You must ascertain whether any such regulations affect you. While every precaution is taken in the product design and manufacturing processes to minimise the effects of corrosion and stress corrosion, there are also preventative as well as corrective treatments that can be carried out after installation. Contact Ronstan for further information.

### Product Information Amendments

All catalogue information is subject to specification changes during a product's life-cycle. Any alterations will be posted on the Websites: [www.RonstanTensileArch.com](http://www.RonstanTensileArch.com) or [www.RonstanRigging.com](http://www.RonstanRigging.com) which should be considered the most up to date source of product information.

## DEFINITIONS

### Yield Load

Yield Load is the maximum static and/or dynamic load at which the product will still function without distortion, wear or permanent deformation of components. Above this load moving parts may seize and stainless steel components may begin to bend, stretch or otherwise deform. Yield loads should never be exceeded in use.

### Ultimate Load (ULT)

Ultimate Load (ULT) is the load at, or around which, a major failure can be expected to occur to some part of the product's structure when new.

The Yield and Ultimate loads detailed in the catalogue should only be considered in the context of the project application. Final product selection is the sole responsibility of the user and/or their consultants.

## WARRANTY

In addition to your rights implied by law, the goods manufactured or sold are warranted to be free of defects in materials or workmanship for three (3) years from the date of purchase by the original purchaser except that:

- This warranty shall not apply to any product which has been improperly fitted, improperly maintained, or used in any application for which it was not intended.
- This warranty shall not apply to normal wear which can reasonably be expected in normal use of the product.
- No warranties are made that any products are fit for a particular purpose.
- The liability shall be limited to the repair or replacement, at the manufacturer's discretion, of the defective goods.
- The useful life of any rigging product is determined by the above factors and must be assessed in each application, and thus no guarantee can be provided for product life, load capacity or any other factor due to the variability in usage.





# www.RonstanTensileArch.com

Ronstan Tensile Architecture also specialises in providing architectural products for:

- Structural Cable applications
- Cable Nets
- Balustrade Cables
- Greening Cables
- Facade Cables

Contact us for catalogues or further information

## AUSTRALIA & ASIA PACIFIC

Ronstan International Pty. Ltd. (Head Office)

19 Park Way, Braeside  
Victoria 3195, Australia

Telephone: +61 (0)3 8586 2000  
Facsimile: +61 (0)3 8586 2099  
Email: arch@ronstan.com.au

## UNITED STATES OF AMERICA

Ronstan International Inc.

45 High Point Avenue, #2  
Portsmouth, RI 02871, USA

Telephone: +1 (401) 293 0539  
Facsimile: +1 (401) 293 0538  
Email: arch@ronstan.us

### Victoria / South Australia / Tasmania

Mobile: +61 (0)420 980 693  
Email: Arch\_vts@ronstan.com.au

### New South Wales / Aust. Capital Territory

Mobile: +61 (0)458 400 247  
Email: Arch\_nsw@ronstan.com.au

### Queensland

Mobile: +61 (0)403 434 218  
Email: Arch\_qld@ronstan.com.au

### Western Australia / Northern Territory

Mobile: +61 (0)408 951 878  
Email: Arch\_wa@ronstan.com.au

### New Zealand

Email: Arch\_nz@ronstan.com.au